A. Dataset
A.1. NAS-Bench-201

We base our evaluations on the NAS-Bench-201 [5]
search space. It is a cell-based architecture search space.
Each cell has in total 4 nodes and 6 edges. The nodes in this
search space correspond to the architecture’s feature maps
and the edges represent the architectures operation, which
are chosen from the operation set O = {1 x 1 conv. ,3 X
3 conv.,3 X 3 avg. pooling ,skip ,zero} (see Figure 1).
This search space contains in total 56 = 15625 architec-
tures, from which only 6466 are unique, since the oper-
ations skip and zero can cause isomorphic cells (see Fig-
ure 6), where the latter operation zero stands for dropping
the edge. Each architecture is trained on three different im-
age datasets for 200 epochs: CIFAR-10 [10], CIFAR-100
[10] and ImageNet16-120 [3]. For our evaluations, we con-
sider all unique architectures in the search space and test
splits of the corresponding datasets. Hence, we evaluate
3 - 6466 = 19 398 pretrained networks in total.
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Figure 6. Example of two isomorphic graphs in NAS-Bench-
201. Due to the skip connection from node in to node 1, both
computational graphs are equivalent, but their identification in the
search space is different. For this dataset, we evaluated all non-
isomorphic graphs (#991 was evaluated and #3365 was not).

A.2. Dataset Gathering

We collect evaluations for our dataset for different cor-
ruptions and adversarial attacks (as discussed in subsec-
tion 2.2 and subsection 2.3) following algorithm 1. This
process is also depicted in Figure 7. Hyperparameter set-
tings for adversarial attacks are listed in Table 2. Due to the
heavy load of running all these evaluations, they are per-
formed on several clusters. These clusters are comprised of
either (i) compute nodes with Nvidia A100 GPUs, 512 GB
RAM, and Intel Xeon IceLake-SP processors, (ii) compute
nodes with NVIDIA Quadro RTX 8000 GPUs, 1024 GB
RAM, and AMD EPYC 7502P processors, (iii)) NVIDIA
Tesla A100 GPUs, 2048 GB RAM, Intel Xeon Platinum
8360Y processors, and (iv) NVIDIA Tesla A40 GPUs, 2048
GB RAM, Intel Xeon Platinum 8360Y processors.

A.3. Dataset Structure, Distribution, and License

Files are provided in json format to ensure platform-
independence and to reduce the dependency on external li-
braries (e.g. Python has built-in json-support).

Table 2. Hyperparameter settings of adversarial attacks evaluated.

Attack | Hyperparameters
FGSM | e€{.1,.5.,1,2,3,4,5,6,7,8,255} /255

PGD ec{1,5,1,2,3,4,8,255}/255
a=0.01/0.3
40 attack iterations

APGD | e€{.1,.5.,,1,2,3,4,8,255} /255
100 attack iterations
Square | € € {.1,.5.,1,2,3,4,8,255}/255

5 000 search iterations

Algorithm 1: Robustness Dataset Gathering

Input: (i) Architecture space A (NAS-Bench-201).
Input: (ii) Test datasets D (CIFAR-10, CIFAR-100,
ImageNet16-120).
Input: (iii) Set of attacks and/or corruptions C'.
Input: (iv) Robustness Dataset R.
1 fora € Ado
> Load pretrained weights for a.
2 a.load_weights(d)
3 for d € D do
4 for ¢(-,-) € C'do
> Corrupt dataset d.
5 d. < c(a,d)
> Evaluate architecture a
with d..
6 Accuracy, Confidence, ConfusionMatrix <—
eval(a, d.)
> Extend robustness dataset

with evaluations.
R[d][c][accuracy”][a] < Accuracy
R[d][c][’confidence”][a] < Confidence
9 R[d][c][’cm”][a] < ConfusionMatrix
10 end
1 end
12 end

We will publish code that accompanies our dataset on
GitHub. The dataset itself will be linked from GitHub and is
hosted on an institutional cloud service. This ensures long-
time availability and the possibility to version the dataset.
Dataset and code will be published at the notification date
under GNU GPLv3.

A.4. Structure

The dataset consists of 3 folders, one for each dataset
evaluated (cifarl0, cifarl100, ImageNet16-120).
Each folder contains one json file for each combination of
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Figure 7. Diagram showing the gathering process for our ro-
bustness dataset. (i) An non-isomorphic architecture contained
in NAS-Bench-201 is created and its parameters are loaded from
a provided checkpoint, dependent on the dataset evaluated. (ii)
Given the evaluation dataset, an attack or corruption, and the
trained network, the evaluation dataset is corrupted and (iii) the
resulting corrupted data is used to evaluate the network. (iv) The
evaluation results are stored in our robustness dataset.

key and measurement. Keys refer to the sort of attack or cor-
ruption used (Table 3 lists all keys). Measurements refer to
the collected evaluation type (accuracy, confidence,
cm). Clean and adversarial evaluations are performed on
all datasets, while common corruptions are evaluated on
cifarl0 and cifar100. Additionally, the dataset con-
tains one metadata file (meta. json).

Metadata The meta. json file contains information
about each architecture in NAS-Bench-201. This includes,
for each architecture identifier, the corresponding string
defining the network design (as per [5]) as well as the identi-
fier of the corresponding non-isomorphic architecture from
[5] that we evaluated. The file also contains all € values that
we evaluated for each adversarial attack. An excerpt of this
file is shown in Figure 8.

Files All files are named
"{key} {measurement}.json".
path to all clean accuracies on cifarlO is
"./cifarl0/clean_accuracy.json". An ex-
cerpt of this file is shown in Figure 9. Each file contains

according to
Hence, the

Table 3. Keys for attacks and corruptions evaluated.

Clean Adversarial Common Corruptions

clean aa_apgd-ce brightness

aa_square contrast

fgsm defocus_blur

pgd elastic_transform
fog
frost
gaussian_noise
glass_blur
impulse_noise
jpeg_compression
motion_blur
pixelate
shot_noise
snow
zoom _blur

TidsT: {
EEYER
“nb201-string”: ”|nor-conv_1x170|+|none0|none 1]+{...} ",
“isomorph”: 721

718327 {
"nb201-string”: “[nor.conv_1x170[+|nor_conv_1x170|none 1 [+{...} ",
“isomorph”: 7309”7

Tra
“epsilons”: {
» gd-ce”: [0.1, 0.5, 1.0, 2.0, 3.0, 4.0, 8.0],

Figure 8. Excerpt of meta. json showing meta information of
architectures #21 and #1832, as well as € values for each attack.
Architecture #21 is non-isomorphic and points to itself, while ar-
chitecture #1832 is an isomorphic instance of #309.

nested dictionaries stating the dataset, evaluation key
and measurement type. For evaluations with multiple
measurements, e.g. in the case of adversarial attacks for
multiple e values, the results are concatenated into a list.
Files and their possible contents are described in Table 4.



vcifarl07: {

“clean”: {
Taccuracy”: {
”0”: 0.856,

“cifarl0”: {
pgd”: {
“accuracy”: {
”0”: [0.812, 0.582, 0.295, 0.034, 0.002, 0.0, 0.0],

Figure 9. Excerpt of (left) clean_accuracy. json and (right)
pgd_accuracy. json for dataset cifar10 for the architec-
ture #0. Numbers are rounded to improve readability.

Table 4. Files and their possible content.

File Description

clean_accuracy one accuracy value for each
evaluated network
one confidence matrix for
each evaluated network and
collection scheme
one confusion matrix for

each evaluated network

clean_confidence

clean_cm

list of accuracies, where
each element corresponds
to the respective € value

list of confidence matrices,
where each element corre-
sponds to the respective €
value

list of confusion matrices,
where each element corre-
sponds to the respective €
value

{attack} _accuracy

{attack} _confidence

{attack} _cm

list of accuracies, where
each element corresponds
to the respective corruption
severity

list of confidence matrices,
where each element cor-
responds to the respective
corruption severity

list of confusion matrices,
where each element cor-
responds to the respective
corruption severity

{corruption} _accuracy

{corruption} _confidence

{corruption}_cm

We showed some analysis and possible use-cases on ac-
curacies in the main paper. In the following, we elaborate on
and show confidence and confusion matrix (cm) mea-
surements.

A.5. Confidence

We collect the mean confidence after softmax for each
network over the whole (attacked) test dataset evaluated.
We used 3 schemes to collect confidences (see Figure 11).
First, confidences for each class are given by true labels
(called 1abel). In case of cifarl0, this results in a
10 x 10 confidence matrix, for cifar100 a 100 x 100
confidence matrix, and ImageNet16-120 a 120 x 120
confidence matrix. Second, confidences for each class
are given by the class predicted by the network (called
argmax). This again results in matrices of sizes as men-
tioned. Third, confidences for correctly classified images as
well as confidences for incorrectly classified images (called
prediction). For all image datasets, this results in a vec-
tor with 2 dimensions. Each result is saved as a list (or list
of list), see Figure 10.

Figure 12 shows a progression of label confidence
values for class label 0 on cifarl0 from clean to
fgsm with increasing values of e. Figure 13 shows how
prediction confidences of correctly and incorrectly
classified images correlate with increasing values of € when
attacked with fgsm.

“cifar10”: {
“clean”: {
“confidence”: {

“label”: [[...1],
“argmax”: [[...]1].,
“prediction™: [...]
}
}
}
}

Figure 10. Excerpt of clean_confidence.json for
cifarl0. Numbers are not shown to improve readability.
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Figure 11. Mean confidence scores on clean CIFAR-10 images for
all non-isomorphic networks in NAS-Bench-201. (top: label)
For each true class label. (middle: argmax) For each predicted
class label. (bottom: prediction) For correct and incorrect
classifications.
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Figure 12. Mean label confidence scores on FGSM-attacked
CIFAR-10 images for different e for all non-isomorphic networks
in NAS-Bench-201. Only confidence scores for class label O are
shown. Networks lose prediction confidence for the true label
when € increases.
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Figure 13. Mean prediction confidence scores on FGSM-
attacked CIFAR-10 images for different € (on top of points) for all
non-isomorphic networks in NAS-Bench-201. Networks become
less confident in their prediction if their prediction is correct when
e increases. Networks become more confident in their prediction if
their prediction is incorrect, however, only up to a certain € value.
When e further increases, confidence drops again.

A.6. Confusion Matrix

For each evaluated network, we collect the confusion
matrix (key: cm) for the corresponding (attacked) test
dataset. The resultis a 10 x 10 matrix in case of cifar10,
a 100 x 100 matrix in case of cifar100, and a 120 x 120
matrix in case of ImageNet16-120. See Figure 14 for
an example, where we summed up confusion matrices for
all networks on cifarl0.

True Class
0 1 2 3 4 5 6 7 8 9

s L

le6

Predicted Class

Figure 14. Aggregated confusion matrices on clean CIFAR-10 im-
ages for all non-isomorphic networks in NAS-Bench-201.

A.7. Correlations between Image Datasets

In Figure 15 we show the correlation between all clean
and adversarial accuracies over all datasets collected. This
plot shows a positive correlation between the image datasets
for the one-step FGSM attack, whereas for all other multi-
step attacks, the correlation becomes close to zero or even
negative.

100

030

Figure 15. Kendall rank correlation coefficient between all clean
and adversarial accuracies that are evaluated in our dataset.



A.8. Example image of corruptions in CIFAR-10-C
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Figure 16. An example image of CIFAR-10-C [7] with differ-
ent corruption types at different severity levels. CIFAR-100-C [7]
consists of images with the same corruption types and severity lev-
els.
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A.9. Main Paper Figures for other Image Datasets

A9.1 CIFAR-100 Adversarial Attack Accuracies (Fig-
ure 2)
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Figure 17. Accuracy boxplots over all unique architectures in
NAS-Bench-201 for different adversarial attacks (FGSM [6], PGD
[11], APGD [4], Square [1]) and perturbation magnitude values ¢,
evaluated on CIFAR-100. Red line corresponds to guessing.

A.9.2 ImageNetl16-120 Adversarial Attack Accuracies
(Figure 2)
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Figure 18. Accuracy boxplots over all unique architectures in
NAS-Bench-201 for different adversarial attacks (FGSM [6], PGD
[11], APGD [4], Square [1]) and perturbation magnitude values ¢,
evaluated on ImageNet16-120. Red line corresponds to guessing.



A.9.3 CIFAR-10-C Common Corruption Accuracies (Figure 2)

cifar10 brightness accuracy cifarl0 contrast accuracy cifar10 defocus_blur accuracy cifarl0 elastic_transform accuracy
= = = =
aas &5 &
0.8 0.8 rl1 0.8 ’_'[_‘ 0.8 ’_L
06 goe ; gos Vl\ g% o
g g g e
g g g g Vi\ i
2 2 3 3
® ® ® ®
0.4 0.4 0.4 0.4 T
0.2 02 L‘J Ll—‘ ,i, 0.2 ! Lg 0.2
== T ° <]
T EN
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
severity severity severity severity
cifarl0 fog accuracy cifarl0 frost accuracy cifar10 gaussian_noise accuracy cifarl0 glass_blur accuracy
0.8 0.8 0.8 0.8
206 206 206 206
8 8 8 8
5 5 5 5
8 g g g
] s b &
0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2
°
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
severity severity severity severity
cifar10 impulse_noise accuracy cifarl0 jpeg_compression accuracy cifar10 motion_blur accuracy cifarl0 pixelate accuracy
0.8 0.8 0.8 0.8
206 206 206 206
8 8 8 8
5 5 5 5
S S g I+
® ® ® ®
0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
severity severity severity severity
cifar10 shot_noise accuracy cifar10 snow accuracy cifarl0 zoom_blur accuracy
= = =

0s 0wl T 0s
L 4 T L i i i l 1
gl SN

severity severity severity

o
o
°
o

T+
=

accuracy
°
£
4 oo m—
accuracy
°
4
accuracy
°
2

Figure 19. Accuracy boxplots over all unique architectures in NAS-Bench-201 for different corruption types at different severity levels,
evaluated on CIFAR-10-C. Red line corresponds to guessing.



A.9.4 CIFAR-100-C Common Corruption Accuracies (Figure 2)
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Figure 20. Accuracy boxplots over all unique architectures in NAS-Bench-201 for different corruption types at different severity levels,
evaluated on CIFAR-100-C. Red line corresponds to guessing.



A.9.5 CIFAR-100 Adversarial Attack Correlations A.9.6 ImageNet16-120 Adversarial Attack Correla-
(Figure 3) tions (Figure 3)
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A.9.7 CIFAR-100-C Common Corruption Correla-
tions
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Figure 23. Kendall rank correlation coefficient between clean ac-
curacies and accuracies on different corruptions at severity level 4
on CIFAR-100-C for all unique architectures in NAS-Bench-201.

B. Analysis

In this section, we first depict the best architectures in
NAS-Bench-201 [5] in subsection B.1, then show the ef-
fect of parameter count on robustness and the magnitude of
potential gains in robustness in a limited parameter count
setting in subsection B.2, and lastly show the effect of sin-
gle changes to the best performing architecture according to
clean accuracy in subsection B.3.

B.1. Best Architectures

Figure 24 visualizes the best architectures in the NAS-
Bench-201 [5] search space in terms of clean accuracy,
mean adversarial accuracy, and mean common corruption
accuracy on CIFAR-10 and their respective edit distances.
The edit distance is defined by the number of changes, ei-
ther node or edge, to change the graph to the target graph. In
the case of NAS-Bench-201 architectures, an edit distance
of 1 means that exactly one operation differs between two
architectures. So in order to modify the best performing
architecture in terms of clean accuracy (#13714) into the
best performing architecture according to mean corruption
accuracy (#3456), we need to exchange two (out of six) op-
erations: (i) exchange operation 2 from 3 x 3 convolution to
zero and (ii) exchange operation 5 from 1 x 1 convolution
to 3 x 3 convolution.
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Figure 24. Best architectures in NAS-Bench-201 according to
(left) clean accuracy, (middle) mean adversarial accuracy (over
all attacks and € values as described in subsection 2.2), and
(right) mean common corruption accuracy (over all corruptions
and severities) on CIFAR-10. See Figure 1 for cell connectivity
and operations.
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Figure 25. (left) Mean adversarial robustness accuracies and
(right) mean corruption robustness accuracies vs. clean accura-
cies on CIFAR-10 for all unique architectures in NAS-Bench-201.
Scatter points are colored based on the number of kernel parame-
ters of a single cell (1 for each 1 x 1 convolution, 9 for each 3 x 3
convolution).

B.2. Cell Kernel Parameter Count

Figure 25 displays the mean adversarial robustness accu-
racies (left) and the mean corruption robustness accuracies
(right) against the clean accuracy, color-coded by the num-
ber of cell kernel parameters. We count 1 for each 1 x 1 con-



volution and 9 for each 3 x 3 convolution contained in the
cell, hence, their number ranges in [0, 54]. Since these are
multipliers for the parameter count of the whole network,
we coin these cell kernel parameters. Overall, we can see
that the cell kernel parameter count matters in terms of ro-
bustness, hence, that networks with large parameter counts
are more robust in general. We can also see that the number
of cell kernel parameters are more essential for robustness
against common corruptions, where the correlation between
clean and corruption accuracy is more linear. Also in terms
of adversarial robustness, there seems to be a large magni-
tude of possible improvements that can be gained by opti-
mizing architecture design.

Limited Cell Parameter Count To further investigate the
magnitude of possible improvements via architectural de-
sign optimization, we look into the scenario of limited cell
parameter count.
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Figure 26. Mean robust accuracy over all attacks as described in
subsection 2.2 on CIFAR-10 by kernel parameters € [0, 54] for all
unique architectures in NAS-Bench-201. Orange scatter points de-
pict all architectures with kernel parameter count 18, hence, archi-
tectures with exactly 2 times 3 X 3 convolutions. Although having
exactly the same parameter count, the mean adversarial robustness
of these networks ranges in [0.21, 0.40].

In Figure 26, we depict all unique architectures in
NAS-Bench-201 by their mean adversarial robustness and
cell kernel parameter count. Networks with parameter count
18 (408 instances in total) are highlighted in orange. As we
can see, there is a large range of mean adversarial accuracies
[0.21,0.4] for the parameter count 18 showing the poten-
tial of doubling the robustness of a network with the same
parameter count by carefully crafting its topology. In Fig-
ure 27 we show the top-20 performing architectures (color-
coded, one operation for each edge) in the mentioned sce-
nario of a parameter count of 18, according to (top) mean
adversarial and (bottom) mean corruption accuracy. It is

interesting to see that in both cases, there are (almost) no
convolutions on edges 2 and 4, and additionally no drop-
ping or skipping of edge 1. In the case of edge 4, it seems
that a single convolution layer connecting input and out-
put of the cell increases sensitivity of the network. Hence,
most of the top-20 robust architectures stack convolutions
(via edge 1, followed by either edge 3 or 5), from which
we hypothesize that stacking convolutions operations might
improve robustness when designing architectures. At the
same time, skipping input to output via edge 4 seems not
to affect robustness negatively, as long as the input feature
map is combined with stacked convolutions. Important to
note here is that this is a first observation, which can be
made by using our provided dataset. This observation func-
tions as a motivation for how this dataset can be used to
analyze robustness in combination with architecture design.
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Figure 27. Top-20 architectures with cell kernel parameter count
18 (hence, architectures with exactly 2 times 3 X 3 convolutions)
according to (top) mean adversarial accuracy and (bottom) mean
corruption accuracy on CIFAR-10. See Figure 1 for cell connec-
tivity and operations (1-6).

B.3. Gains and Losses by Single Changes

The fact that our dataset contains evaluations for all
unique architectures in NAS-Bench-201 enables us to ana-
lyze the effect of small architectural changes. In Figure 28,
we depict again all unique architectures by their clean and
robust accuracies on CIFAR-10 [10]. The red data point in
both plots shows the best performing architecture in terms
of clean accuracy (#13714, see Figure 24), while the or-
ange points are its neighboring architectures with edit dis-
tance 1. The operation changed for each point is shown in
the legend. As we can see in the case of adversarial attacks,



we can trade-off more robust accuracy for less clean accu-
racy by changing only one operation. While some changes
seem obvious (adding more parameters as with 13 and 14),
it is interesting to see that exchanging the 3 X 3 convolu-
tion on edge 3 with average pooling (and hence, reducing
the amount of parameters) also improves adversarial robust-
ness. In terms of robustness towards common corruptions,
each architectural change leads to worse clean and robust
accuracy in this case. Changing more than one operation is
necessary to improve common corruption accuracy of this
network (as we have seen in Figure 24).
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Figure 28. (top) Scatter plot clean accuracy vs. mean adversar-
ial accuracy (over all attacks and e values as described in sub-
section 2.2) on CIFAR-10. (bottom) Scatter plot clean accuracy
vs. mean common corruption accuracy (over all corruptions and
severities) on CIFAR-10. The red data point shows the best per-
forming architecture according to clean accuracy on CIFAR-10.
The orange data points are neighboring architectures, where ex-
actly one operation differs. The change of operation is depicted
in the legend. The number in brackets refers to the edge where
the operation was changed. See Figure 1 for cell connectivity and
operations (1-6).
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