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Supplementary Materials

A Overview

• In Sec. B we provide examples of each dataset we adopt.
• In Sec. C we provide more explanations and analysis to depth-relevant and depth-irrelevant features.
• In Sec. D we extend the discussion in main paper Sec. 4.
• In Sec. E we show the formula of depth evaluation metrics and organize TL;DR for terms used in

the work.
• In Sec. F we display the pseudo-code for direct supervised learning and meta-learning under our

fine-grained task setting.
• In Sec. G we provide more studies on different learning strategies, compare with other cross-dataset

evaluation works, plug meta-initialization into existing frameworks to validate meta-learning, show
extensive qualitative depth map results, and show more quantitative and qualitative results for
depth-supervised NeRF.

• In Sec. H we illustrate the broader impact related to this work.

B Data Samples

Examples of all the adopted datasets and their features are shown in Fig. S1.

C Depth-Relevant and Depth-Irrelevant Features

In Introduction and Section 3.1 of the main paper, we explain the division between depth-relevant
and depth-irrelevant features: whether pixel color or appearance changes indicate depth changes. An
example of the former is foreground object boundaries, where the color changes imply depth changes.
By contrast, simple material textures or paintings are depth-irrelevant. We show an illustration in Fig.
S2. In Fig. 3 of the paper, we show that meta-learning can induce better image-to-depth understanding

Figure S2: Illustration of the division between depth-relevant and depth-irrelevant cues.

and suppress depth-irrelevant features, such as flat areas on the textured carpet and clearer object
boundaries in depth maps. For deeper insight, the experiment in paper Fig. 3 is trained on Replica,
which contains only 18 environments, and some possess the same structures with minor arrangement
changes (See Fig. S1). Limited scene variety makes it difficult for direct supervised learning to attain
good or valid image-to-depth understanding, and thus it reaches inferior performance. Therefore,
as shown in paper Fig. 3, it cannot suppress depth-irrelevant cues and reflect texture patterns in the
depth maps.

In contrast, meta-learning is good at few-shot or low-source learning in literature because of its
learning nature. It can learn generalizable good or valid image-to-depth mappings from scenes with
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limited scene variety. Its dual-step optimization does not directly fit each training pair but uses a
step size β in Algorithm 1 (meta-initialization) to control how much the explored gradient updating
direction is trusted. Thus, it avoids directly fitting each seen example and allows more exploration in
the neighborhood of each solution point, achieving better image-to-depth understanding for higher
depth accuracy. We show a comparison in Fig. S3 for the effects of the β parameter.

Figure S3: Effects of different step size parameter β. ConvNeXt-base architecture is used. We show
that using a larger step size parameter β = 0.9, the training becomes more similar to direct supervised
learning that tries to fit each seen training sample, but may not fully explore the neighborhood for
each intermediate solution and attain better image-to-depth mappings as meta-learning performs. See
the main text.

D How is fine-grained task related to other meta-learning studies?

There are several previous findings on learning techniques or issues related to meta-learning. Here
we discuss how those findings apply to fine-grained tasks.

Relation to domain-agnostic task augmentation. Domain-agnostic task augmentation is to densify
sampled data points in each task to add robustness, such as label noise

Relation to task interpolation. Unlike domain-agnostic augmentation, task interpolation (MLTI

Relation to meta-memorization and meta-overfitting. Prior meta-learning studies

E Error Metrics Formula for Depth Evaluation and Term Dictionary

We provide formula for adopted depth evaluation metrics between prediction (xs) and groundtruth
(ys), ∀s ∈ S, as follows.

(1) MAE: 1
|S|

∑
s∈S |xs − ys|.

(2) AbsRel: 1
|S|

∑
s∈S

|xs−ys|
ys

.

(3) RMSE:
√

1
|S|

∑
s∈S(xi − yi)2.
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(4) RMSElog:
√

1
|S|

∑
s∈S(log(xi)− log(yi))2.

The above four are error metrics. The lower the better.

(5) Depth accuracy δi:

δi =
card(

{
xs : max{xs

ys
, ys

xs
} < 1.25i

}
)

card({ys)}
, (S1)

where card(.) is the cardinality of a set. This is an accuracy metric. The higher the better.

Variance. We also observe that meta-initialization induces smaller variances on error |xs − ys|.
Error variance for Table 4 Hypersim→Replica are DPT-hybrid: 0.236, DPT-hybrid + Meta: 0.201,
DPT-large: 0.218, DPT-large + Meta: 0.199. This shows that meta-initialization tends to predict
more structured depth in reasonable ranges, preventing jumpy depth that causes large errors.

Dictionary. We provide quick explanations as TL;DR for terms used in the paper.
• generalizability refers to whether a pretrained model can generalize to unseen data and make

reasonably good inferences. This work especially stresses generalizability to unseen data from
different datasets.

• zero-shot cross-dataset inference refers to training on A-dataset without any knowledge on
B-dataset and making inference on B−dataset.

• scene variety refers to variety of scene appearance and geometry (RGBD) pairs in a dataset.
• task in meta-learning context contains a distribution to sample data from. Those data share

similarities or affinity so that they can be grouped together.
• depth-relevant/ depth-irrelevant low-level cues refer to whether pixel color or appearance

changes as low-level cues indicate depth changes. An example of the former is foreground object
boundaries. Simple material textures or paintings are depth-irrelevant.

F Pseudo-code

We display pseudo-code for direct supervised learning and our fine-grained task meta-learning as
follows. Our fine-grained task meta-learning only needs to adapt a few lines of codes in a conventional
supervised learning framework to build bi-level optimization. With this simple plug-in, our fine-
grained task meta-learning effectively learns better domain generalizability and higher geometry
resolvability, as shown in the qualitative and quantitative evaluation.

1 # I: image as a minibatch
2 # D: depth groundtruth of I
3 def direct_supervised_learning(I,D):
4 optimizer.zero_grad () # flush out gradient
5 D_pred = model(I) # predict depth
6 loss = criterion(D_pred ,D) # calculate loss
7 loss.backward () # back -prop
8 optimizer.step() # update network
9

10 def meta_learning(I,D):
11 meta_optimizer.zero_grad () # flush out gradient
12 for step in range(L): # L-step
13 inner_optimizer.zero_grad () # flush out gradient
14 D_pred = inner_model(I) # predict depth
15 loss = criterion(D_pred ,D) # calculate loss
16 loss.backward () # back -prop
17 optimizer.step() # SGD -update inner -network
18 for meta_param , inner_param = zip(meta_model.parameters (),

inner_model.parameters ()):
19 # assign gradient as parameter difference
20 meta_param.grad = meta_param - inner_param
21 meta_optimizer.step() # SGD -update meta -network

Listing 1: PyTorch-like pseudo-code for direct supervised learning and our fine-grained task meta-
learning
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G More Results

Comparison with simple pretraining on the same dataset. We first compare with simple pretraining
on the same dataset but with different learning schedules. The networks are pretrained by 5 epochs
using larger and feasible learning rates of 0.001 and 0.0003 and a strong weight decay of 0.1. Then,
the learned weights serve as initialization for the following supervised learning, whose setting is
the same as in the main paper. The purpose is trying to examine whether a higher-level and smooth
prior can be learned without using meta-learning. Then the same as meta-initialization, we use the
learned weights as initialization for the second-stage supervised learning. We use ResNet50 and
ConvNext-base and train/test on NYUv2. Results of different learning rates and weight decay are
compared and shown in Table S1. We find that larger learning rates and weight decay cannot learn
a good prior but damage the performance. Besides, higher weight decay did not result in apparent
positive effects. Note that "w/o Pretraining" simply uses the second-stage supervised learning. The
entry "w/ Pretraining (lr=3x10−4, wd=10−2)" is equivalent with longer training for "w/o Pretraining"
since its learning rate and weight decay match those used in the "w/o Pretraining." The results
show that simple pretraining cannot learn a better prior. Thus, we resort to meta-learning with its
advantages of higher model generalizability in literature.

Table S1: Comparison with simple pretraining strategy. Adopted architecture, learning rate (lr),
and weight decay (wd) are shown. The pretraining first uses a higher lr and wd of 0.001 and 0.1
to learn a smooth prior. We also experiment with different lr and wd for comparison. The learned
weights are then used as initialization for the second-stage supervised learning. See text for the
pretraining setting. The pretraining does not improve over baseline without this trick, and larger
weight decay slightly degrades the performance.

NYUv2 MAE AbsRel RMSE δ1 δ2 δ3
ResNet50

w/o Pretraining 0.345 0.131 0.480 83.6 96.4 99.0
w/ Pretraining (lr=10−3, wd=10−1) 0.362 0.138 0.500 82.9 95.6 97.9
w/ Pretraining (lr=3x10−4, wd=10−1) 0.347 0.132 0.481 83.5 96.4 99.0
w/ Pretraining (lr=3x10−4, wd=10−2) 0.345 0.133 0.480 83.6 96.4 99.0
w/ Meta-Initialization 0.325 0.122 0.454 85.4 96.8 99.3

ConvNeXt-base
w/o Pretraining 0.273 0.101 0.394 89.4 97.9 99.5
w/ Pretraining (lr=10−3, wd=10−1) 0.288 0.109 0.414 87.5 97.5 99.4
w/ Pretraining (lr=3x10−4, wd=10−1) 0.276 0.103 0.397 89.2 97.9 99.5
w/ Pretraining (lr=3x10−4, wd=10−2) 0.274 0.101 0.395 89.3 97.9 99.5
w/ Meta-Initialization 0.266 0.099 0.387 89.8 98.1 99.5

Comparison with gradient accumulation. We next compare with gradient accumulation. Setting-1:
Similar to the prior-learning stage, gradients are accumulated for 4 iterations and then used to update
network parameters once. This resembles taking off the inner exploration and inner optimizer in
meta-learning. We train this strategy for 5 epochs with a learning rate of 0.0012, 4x by its base
learning rate since we accumulate gradients for 4 iterations. Then we used the learned weights as
initialization for the following standard supervised learning whose hyperparameters are the same as in
the main paper. Setting-2: We adopt a single-stage approach, which does not require the prior-learning
stage, and simply use the gradient accumulation trick in the standard supervised learning. We also
accumulate gradients for 4 iterations and use a learning rate of 0.0012. The rest hyperparameters
are intact. We again use ResNet50 and ConvNext-base and train/test on NYUv2. Results are shown
in Table S2. From the table, we empirically find both settings do not improve the results of "Base",
which is standard supervised learning without any add-on methods. We think this is because gradient
accumulation has effects of using large batch size, which has a higher risk to overfit training data by
converging to poor local optima, due to the reduction of stochasticity in the gradient updates

Additional comparison to other works. Few recent works are related to cross-dataset evaluation for
indoor depth, including unsupervised domain adaptation

We further compare to an unsupervised domain adaptation method T2Net

Additional results for adding meta-initialization to dedicated depth estimation architecture.
In addition to Table 4 in the paper, we provide more experiments using other existing dedicated
architecture for monocular depth estimation, including AdaBins
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Table S2: Comparison with gradient accumulation. Two settings in comparison are described in
Sec. G. "Base" refers to using standard supervised learning without any add-on methods. Empirically
we find gradient accumulation does not improve results but degrades performance a little.

NYUv2 MAE AbsRel RMSE δ1 δ2 δ3
ResNet50

Base 0.345 0.131 0.480 83.6 96.4 99.0
Setting-1 0.349 0.133 0.487 83.4 96.3 99.0
Setting-2 0.353 0.134 0.493 83.1 96.1 98.8
Meta-Initialization 0.325 0.122 0.454 85.4 96.8 99.3

ConvNeXt-base
Base 0.273 0.101 0.394 89.4 97.9 99.5
Setting-1 0.277 0.103 0.399 89.1 97.8 99.4
Setting-2 0.279 0.105 0.406 88.9 97.7 99.4
Meta-Initialization 0.266 0.099 0.387 89.8 98.1 99.5

SUNCG→NYUv2 AbsRel RMSE δ1 δ2 δ3
0.203 0.738 67.0 89.1 96.6
0.186 0.710 71.2 91.7 97.7
0.196 0.662 69.5 91.0 97.2

Our Meta-Initialization 0.177 0.635 72.8 92.8 97.8

Qualitative results on zero-shot cross-dataset evaluation. Following the quantitative comparison
in Table 3 and Table 4 in the main paper, we show qualitative comparisons to examine zero-shot
cross-dataset evaluation. In Fig. S4, we use ConvNeXt-Base as the backbone network, train on
HM3D and make inferences on Replica and VA, and compare between using meta-initialization and
without meta-initialization. In Fig. S5, we use the dedicated depth estimation architecture, DPT-large,
train on Hypersim and make inferences on NYUv2 and Replica, and also compare between using
meta-initialization and without meta-initialization.

In both Fig. S4 and S5, meta-initialization induces clearer depth shapes and outlines with less
irregularity. The results show that on the challenging zero-shot cross-dataset evaluation, meta-
initialization can learn higher model generalizability that transfers knowledge from synthetic datasets
(HM3D and Hypersim) to more challenging and higher quality synthetic (VA) or real data (NYUv2)
and estimates accurate depth shapes for them.

Depth-supervised NeRF. In the main paper Sec. 4.4 we train NeRF 1 with supervision by depth
predicted from our meta-initialization strategy using ConvNeXt-Base backbone. To convert from
depth (z-value) to ray distance in a pinhole camera model, we do the following conversion.

distance = depth×
√
1 + (

x− cx
fx

)2 + (
y − cy
fy

)2, (S2)

where cx and cy are principal point coordinates, and fx and fy are focal lengths.

We show more quantitative comparisons for depth-supervised NeRF in Table S5 on Replica. Each
is trained with 180 views along with losses for pixel color and distances, as described in the main
paper Sec.4.4. The use of meta-initialization consistently outperforms the baselines, without meta-
initialization, in terms of image quality metrics. More qualitative comparisons are displayed in
Fig. S6.

H Broader Impact

The research focuses on using gradient-based meta-learning to improve monocular depth estimation
performance. As monocular depth can be applied in indoor AR/VR creation and interaction, robot
navigation, and learning 3D representations for general purposes, the proposed method can be a
part of a training convention that facilitates depth estimation to attain each goal for each application,
especially fulfill the purpose of in-the-wild robustness.

Ethical considerations: This work studies how to improve model generalizability by meta-learning.
The advantage this work brings about is better indoor depth estimation technology for applications

1Specifically, we use high-performing instant-ngp
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Table S4: Extended comparison of zero-shot cross-dataset evaluation for dedicated depth
estimation architecture.

Hypersim → Replica MAE AbsRel RMSE δ1 δ2 δ3
0.395 0.210 0.564 70.4 88.1 94.7

AdaBins+Meta 0.377 0.198 0.541 71.6 89.2 95.5
0.352 0.191 0.522 73.0 90.9 96.5

GLPDepth+Meta 0.337 0.180 0.498 74.4 92.2 96.8
Hypersim → NYUv2 MAE AbsRel RMSE δ1 δ2 δ3

0.469 0.188 0.642 72.6 91.2 96.6
AdaBins+Meta 0.448 0.175 0.625 74.0 92.6 97.4

0.438 0.169 0.604 75.3 93.9 98.2
GLPDepth+Meta 0.414 0.158 0.583 77.9 94.3 98.3

Table S5: More results on depth-supervised NeRF. We test on Replica ’room-0’, ’room-1’, room-2’,
’office-0’, ’office-1’, and ’office-2’ environments. We train a NeRF on each environment with 180
views. The comparison between using depth from meta-initialization and w/o meta-initialization for
supervision is drawn. PSNR and SSIM are image quality metrics; the higher, the better.

w/o meta-initialization w/ meta-initialization
Environment PSNR SSIM PSNR SSIM

Room-0 29.988 0.8184 30.920 0.8373
Room-1 34.547 0.9279 34.871 0.9305
Room-2 36.680 0.9560 37.460 0.9609
Office-0 38.674 0.9629 39.290 0.9680
Office-1 36.196 0.9427 36.867 0.9460
Office-2 42.648 0.9638 42.665 0.9646

such as AR/VR, gaming systems, or real estate demonstrations. Depth or geometric data are less
sensitive since it provides only shape outlines that are less identifiable and do not leak personal
information seriously.
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Figure S4: Qualitative comparison on cross-dataset inference using ConvNeXt-Base. Highlighted
areas show the differences. Zoom in for the best view.
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Figure S6: Image quality comparison for NeRF rendering. We show the quality metrics (the
higher the better) under each image. Zoom in for the best view.
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