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Abstract

Adversarial attacks in the physical world can harm the
robustness of detection models. Evaluating the robustness
of detection models in the physical world can be challeng-
ing due to the time-consuming and labor-intensive nature
of many experiments. Thus, virtual simulation experiments
can provide a solution to this challenge. However, there
is no unified detection benchmark based on virtual sim-
ulation environment. To address this challenge, we pro-
posed an instant-level data generation pipeline based on
the CARLA simulator. Using this pipeline, we generated the
DCI dataset and conducted extensive experiments on three
detection models and three physical adversarial attacks.
The dataset covers 7 continuous and 1 discrete scenes, with
over 40 angles, 20 distances, and 20,000 positions. The
results indicate that Yolo v6 had strongest resistance, with
only a 6.59% average AP drop, and ASA was the most effec-
tive attack algorithm with a 14.51% average AP reduction,
twice that of other algorithms. Static scenes had higher
recognition AP, and results under different weather condi-
tions were similar. Adversarial attack algorithm improve-
ment may be approaching its ’limitation’.

1. Introduction

Detection models are vulnerable to adversarial pertur-
bations, resulting in incorrect results. To overcome the
time-consuming and labor-intensive problems of physical
experiments, virtual simulation environments are gaining
recognition as a valuable alternative, effectively address-
ing challenges such as inconvenient testing, difficult repro-
ducibility, and high costs. Several adversarial attack al-
gorithms [3, 17, 19, 21, 22] for vehicle detection scenarios
have been proposed using CARLA simulators, revealing
robustness issues. However, there is no widely accepted
benchmark to support this research. To address this gap,
we propose an instant-level scene generation pipeline based

Figure 1. The Discrete and Continuous Instant-level Dataset
(DCI): the discrete part aims to provide all-round coverage, while
the continuous part is designed to test specific scenarios in greater
depth.

on CARLA and create the Discrete and Continuous Instant-
level (DCI) dataset, covering various scenarios with differ-
ent sequences, perspectives, weather, textures, and more.
Figure 1 illustrates different parts of the DCI dataset. Our
main contributions are summarized as follows.

• We propose the DCI dataset to serve as a benchmark
for evaluating the adversarial robustness of vehicle de-
tection in the physical world.

• We extensively evaluate three detection models and
three adversarial attack algorithms using the DCI
dataset, demonstrating the effectiveness of these at-
tacks under various scenarios.

2. Related Work
2.1. Adversarial Robustness Benchmark

Several physical-world adversarial example generation
methods have been proposed and demonstrated to be ef-
fective [6, 7, 9–11, 18, 20]. However, they use different
dataset for evaluation, which makes it difficult to conduct
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a comprehensive evaluation. To address this issue, sev-
eral benchmarks have been proposed, including those by
Dong et al. [1] and Liu et al. [8]. Tang et al. [16] proposed
the first unified Robustness Assessment Benchmark, Robus-
tART, which provides a standardized evaluation framework
for adversarial examples.

In the virtual simulation environment, several adversar-
ial attack algorithms for vehicle recognition scenarios have
been proposed [17, 19, 21, 22] and shown to be effective.
The CARLA simulator [2] has been widely used in these
studies due to its versatility and availability. However, the
lack of a unified evaluation benchmark makes it difficult to
compare and analyze the results. Establishing a benchmark
is essential to promote the development of robust vehicle
detection models.

2.2. Virtual Environment of Vehicle Detection

A series of vehicle detection-related simulators have
been proposed. Simulators developed based on the Unity
engine, such as LGSVL [14], and those developed based on
the Unreal engine, such as Airsim [15] and CARLA [2], all
support camera simulation. Among them, the Airsim sim-
ulator focuses more on drone-related research, while com-
pared with LGSVL, current research on adversarial secu-
rity is more focused on the CARLA simulator [17, 19, 22].
CARLA is equipped with scenes and high-precision maps
made by RoadRunner, and provides options for map editing.
It also supports environment lighting and weather adjust-
ments, as well as the simulation of pedestrian and vehicle
behaviors.

Based on the above exploration, this study intends to use
the CARLA autonomous driving simulator as the basic sim-
ulation environment to carry out research on the security
analysis of autonomous driving intelligent perception algo-
rithms.

3. DCI Dataset: Instant-level Scene Genera-
tion and Design

3.1. Instant-level Scene Generation Pipeline

For scenario generation, as mentioned earlier, we utilize
the CARLA simulator as the underlying renderer and com-
bine it with the Neural renderer [4] to balance feasibility
and fidelity of the test. The CARLA renderer provides the
highest fidelity but is non-differentiable, while the neural
renderer ensures traceable gradients, facilitating further re-
search.

Previous methods only transferred position coordinates
between the two renderers, resulting in a significant dis-
crepancy between the synthesized images. To reduce the
gap between the two renderers, we introduced transferred
environmental parameters. The environmental parameters
transferred between the two renderers are listed in Figure 2.

Figure 2. The pipeline and transferred parameters for instant-level
scene generation

Specifically, we use the CARLA simulator to first gen-
erate the Background image and obtain the position coor-
dinates Pco and environment parameters Pen using the sim-
ulator’s built-in sensor. Next, we transfer Pco and Pen to
the neural renderer. The Neural renderer then loads the 3D
model and uses the received parameters to generate the Car
image. During the rendering process, we adjust the relevant
settings of the neural renderer according to the sampling
environment in CARLA to narrow the gap between the two
renderers. We then use a Mask to extract the background
image and vehicle image respectively. After completing the
pipeline, we obtain an instant-level scene. The framework
of scene generation is shown in Figure 2.

3.2. DCI Dataset Design

The Discrete and Continuous Instant-level (DCI) dataset
is designed to evaluate the performance of vehicle detection
models in diverse scenarios. It can be divided into two parts
that focus on different aspects.

The Continuous part of the DCI dataset comprises 7
typical scenes, each describing a real-life scenario that is
widely used. To address the issue of irregular data distri-
bution, we adopted a multi-perspective approach, includ-
ing driver, UAV, and monitoring, to continuously sample
real-world application backgrounds. To expand the cover-
age, we chose three different weather conditions to generate
the dataset: ClearNoon, ClearNight, and WetCloudySunset.
This part of data set involves seven angles, distances and
more than 2000 different positions.

The Discrete part of the DCI dataset is designed to ex-
pand coverage by selecting different maps, sampling dis-
tances, pitch angles, azimuth angles, and other parameters.
We traverse the road positions in the map while fine-tuning
environmental conditions such as lighting angle, lighting in-
tensity, environmental haze, and particle density to meet the
general test requirements. This part of data set involves 40
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Table 1. The AP of class Car on the DCI datasets

Scene weather
initial FCA ASA DAS

APY OLOv3 APY OLOv6 APfrcnn APY OLOv3 APY OLOv6 APfrcnn APY OLOv3 APY OLOv6 APfrcnn APY OLOv3 APY OLOv6 APfrcnn

Overall Random 65.37 73.39 56.81 56.80 68.44 47.21 41.59 65.68 44.76 57.39 65.66 50.49

Traffic Circle
ClearNoon 77.04 88.44 34.7 48.97 64.43 23.9 41.63 76 25.93 52.00 51.35 7.85
ClearNight 39.02 87.43 16.88 18.11 71.48 4.96 24.43 79.8 9.06 11.82 66.19 1.5
WetCloudySunset 74.03 84.98 6.71 67.42 74.44 6.46 61.55 82.94 14.83 58.39 54.94 8.8

Parking Lot
ClearNoon 16.86 29.54 30.32 14.9 16.22 11.95 1.49 13.81 10.74 13.14 15.66 16.06
ClearNight 29.84 37.99 44.98 20.54 26.75 16.78 8.54 15.81 11.68 20.79 23.07 25.88
WetCloudySunset 22.39 29.46 25.61 12.68 17.02 12.02 11.38 15.38 11.22 13.6 14.94 13.34

Stationary A
ClearNoon 66.47 67.92 68.57 54.59 55.54 57.01 19.1 39.06 48.97 55.48 55.48 64.11
ClearNight 66.02 68.64 66.55 38.38 64.96 64.68 19.97 48.34 59.83 45.5 59.86 65.37
WetCloudySunset 66.33 70.4 68.56 48.61 62.79 39.17 35.03 59.92 57.41 45.94 59.51 62.76

Straight Through A
ClearNoon 89.52 85.77 88.44 88.57 86.68 64.18 58.01 79.79 69.55 83.23 88.57 81.18
ClearNight 79.12 81.35 82.86 81.13 82.61 80.31 59.96 79.22 82.29 80.54 79.53 83.52
WetCloudySunset 74.16 80.36 74.29 77.27 80.63 70.88 60.24 80.64 72.13 75.11 80.6 75.49

Turning Left A
ClearNoon 42.15 67.42 16.31 58.7 82.28 14.12 55.76 73.89 6.52 69.58 78.41 14.38
ClearNight 79.44 79.46 22.75 77.31 80.39 18.34 71.1 77.91 15.16 79.06 79.23 19.52
WetCloudySunset 22.47 46.13 15.73 31.38 59.31 17.11 25.81 51.83 16.24 30.17 58.87 17.24

Stationary B
ClearNoon 99.59 100 100 91.66 89.87 98.53 50.89 86.18 90.93 96.52 94.83 96.94
ClearNight 98.77 100 100 64.13 100 99.89 56.33 94.41 93.7 81.67 99.89 99.61
WetCloudySunset 98.07 100 100 88.52 92.13 82.19 55.56 98.87 83.48 72.53 87.97 90.63

Straight Through B
ClearNoon 75.08 77.24 79.12 62.36 68 64.65 27.32 69.46 47.95 69.74 74.47 64.63
ClearNight 79.77 80.99 74.89 78.25 82.09 71.16 76.52 81.97 58.75 81.77 82.25 74.19
WetCloudySunset 75.32 77.82 75.71 69.27 79.59 73.03 52.92 74.2 53.59 70.8 73.23 77.32

angles, 15 distances and more than 20000 different posi-
tions.

4. Experiments and Evaluations
4.1. Experiment Settings

Adversarial Attack Algorithm. We employed four al-
gorithms to generate adversarial examples: the initial tex-
ture, DAS algorithm [19], FCA algorithm [17], and ASA
algorithm [22]. These algorithms were chosen based on
their effectiveness in generating adversarial examples and
their compatibility with the proposed method.

Vehicle 3D Model. We used the Audi E-Tron, a com-
monly used 3D model in previous studies, for our experi-
ments. The model comprises 13,449 vertices, 10,283 vertex
normals, 14,039 texture coordinates, and 23,145 triangles.

Vehicle Detection Algorithm. We evaluated the pro-
posed method on three popular object detection algorithms:
YOLO v3 [12] YOLO v6 [5] and Faster R-CNN [13].
By selecting both single-stage and two-stage typical algo-
rithms, we investigated the capability of the attack algo-
rithm in the real world. The target class we chose is the car.
We used the Average Precision (AP) as the evaluation met-
ric to measure the performance of the detection algorithm
on the test dataset.

4.2. Evalutaions

The results presented in Table 1 are analyzed as follows.
Comparison of Model Robustness. In almost all exper-

iments, the YOLO v6 model showed the highest AP value,
whereas YOLO v3 and Faster RCNN exhibited mixed re-
sults. However, after introducing adversarial perturbations,
the average AP drop rates for the YOLO v3, YOLO v6

and Faster RCNN were 13.44%, 6.79%, and 9.32%, respec-
tively, with YOLO v6 exhibiting the strongest stability and
YOLO v3 showing the weakest robustness.

Comparison of Adversarial Attack Algorithms. The
corresponding AP drop values for FCA, ASA and DAS
were 7.71%, 14.51%, and 7.34%, respectively, with the
ASA algorithm achieving almost twice the attack effect of
the other algorithms. However, this attack effect strongly
depends on the scenario. Although ASA performs best in
most scenarios, both DAS and FCA outperform ASA in the
Traffic Circle scenario.

Comparison of Instance-level Scenes. There is a sig-
nificant difference in AP values between different scenes,
with an average recognition AP of only 29.66% in the Park-
ing Lot scenario, while the AP in the Stationary B scenario
reaches 99.6%. After analyzing scenes with different AP
values, it was found that scenes with low AP values corre-
spond to situations where the observer is moving.

Specific Scenarios Analysis. We selected the Parking
Lot scenario for further analysis, and the Precision-Recall
curve is presented in Figure 3. The two highest lines corre-
spond to the initial texture. For other adversarial textures,
the data distribution shows similarities despite differences
in values. Since the attack is not limited in scope, this sug-
gests that different attacks may have certain limitations.

5. Conclusion

In the experiment, Yolo v6 showed the strongest resis-
tance to attacks with an average AP drop of only 6.59%.
ASA was the most effective attack algorithm, reducing AP
by an average of 14.51%, twice that of other algorithms.
Static scenes had higher recognition AP, and results in the
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(a) ClearNoon (b) ClearNight (c) WetCloudySunset

Figure 3. The Precision-Recall chart illustrates the Park Lot scenario in three different weather conditions, demonstrating a similar distri-
bution of values.

same scene under different weather conditions were similar.
Further improvement of adversarial attack algorithms may
be reaching the ’limitation’.
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