Implications of Solution Patterns on Adversarial Robustness

Hengyue Liang
Department of Electrical & Computer Engineering
University of Minnesota
liang656Q@umn.edu

Buyun Liang, Ju Sun
Department of Computer Science & Engineering
University of Minnesota

{liang664,

Ying Cui
Department of Industrial & Systems Engineering
University of Minnesota

yingcui@umn.edu

Abstract

Empirical robustness evaluation (RE) of deep learn-
ing models against adversarial perturbations involves solv-
ing non-trivial constrained optimization problems. Re-
cent work has shown that these RE problems can be reli-
ably solved by a general-purpose constrained-optimization
solver, PyGRANSO with Constraint-Folding (PWCF). In this
paper, we take advantage of PWCF and other existing nu-
merical RE algorithms to explore distinct solution patterns
in solving RE problems with various combinations of losses,
perturbation models, and optimization algorithms. We then
provide extensive discussions on the implications of these
patterns on current robustness evaluation and adversarial
training. A comprehensive version of this work can be found

in[/9].

1. Introduction

Formulations of adversarial robustness in constraint opti-
mization problems In visual recognition, deep neural net-
works (DNN5s) are not robust against perturbations that are
easily discounted by human perception—either adversarially
constructed or naturally occurring [2,9, 11-13,15,28-30]. A
popular way to formalize robustness is by finding the worst-
case perturbations within a prescribed radius via maximizing
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the adversarial loss [14,20]:

max £ (y, fo('))

' €[0,1]".

ey
s.t. d(z,x') <e,

Here, fg is the DNN under consideration parameterized
by 6, x is an image input, ' is a perturbed version of x
with an allowable perturbation radius € measured by the
distance metric d, and &’ € [0, 1] ensures &’ to be a valid
image (n: the number of pixels). Another formalism of
robustness is by robustness radius, defined as the minimal
level of perturbation(s) so that fg(x) and fg(x’) can lead
to different predictions, which was first introduced in [28],
even earlier than (1):

min d(z,x')

s. t. max fo(x') > fa(x'), ' €[0,1]". @
iy

Here, y is the true class of = and f§ represents the it" logit
output. Early work assumes that the distance metric d in
both (1) and (2) are the ¢, distance, where p = 1,2, co are
popular choices [11,20]. Recent work has also modeled
non-trivial transformations using metrics other than the ¢,
distances [2,9, 12, 13, 15, 16,29, 30], to capture visually
realistic perturbations and generate adversarial examples
with more varieties.

As for the applications, (1) is usually associated with an
attacker in an adversarial setup, where the attacker tries to
find an input that is visually similar to & but can fool fy



to predict incorrectly, as solutions to (1) lead to worst-case
perturbations w.r.t the classification loss. Thus, it is popular
to perform robustness evaluation (RE) via (1): generating
perturbations over a validation dataset and reporting the
classification accuracy (a.k.a. robust accuracy) using the
perturbed samples. (1) also motivates adversarial training
(AT) to try to achieve adversarial robustness (AR) [11,14,20]
(which seems unlikely; see Sec. 4.2):

win B y)~p max £ (y. fo(z)) 3)
where D is the data distribution, and A(z) = {2’ € [0,1]™ :
d(x,x') < e}, in contrast to the classical supervised learn-

ing:
meinE(m}y)ND L(y, fo(x)) . )

As for (2), it is also a popular choice to calculate robust
accuracy in RE' [6,7,23] as the solutions will also produce
fooling samples «’. But more importantly, solving (2) can
be used to estimate the sample-wise robustness radius—a
quantity that can be used to measure the robustness for every
input. However, it is common that existing methods for
solving (2) emphasize the role of finding =’ but overlook the
importance of the robustness radius, e.g., [6,23].

Numerical solvers for solving (1) and (2) (1) is popularly
solved by the projected gradient descent (PGD) method. The
basic update reads:

Te = Pae) (T + tV(204)) &)

where Pa () is the projection operator to the feasible set
A(z). When A(z) = {z’ € [0,1]" : ||’ — 2|, < e} with
p =1, 2, 00, there are efficient analytical methods to derive
(or approximate) Pa (). For these cases, applying PGD is
convenient. However, for other general ¢, and non-/,, dis-
tances, analytical projectors mostly cannot be derived and
PGD methods do not apply. Currently, one of the state-of-
the-art (SOTA) numerical solvers for (1) is APGD (Auto-
PGD) from the AutoAttack [7] package. As for solving
(2), the difficulty lies in dealing with the highly nonlinear
constraint: max;, fo(x’) > fi(x’). One of the SOTA
methods, Fast Boundary Attack (FAB) [0], uses iterative
linearization to circumvent it. FAB linearizes the constraint
at each step, leading to simple solutions to the projection
(onto the intersection of the linearized decision boundary
and the [0, 1] box) for particular choices of d (i.e., {1, {2
and /. distances). Similar to PGD, FAB does not handle
general £, metrics and non-¢,, metrics due to the use of ana-
lytical projection. Recent work [ 18] has proposed to solve
(1) using a general-purpose nonlinear optimization solver,
PyGRANSO with-Constraint-Folding (PWCF). PWCF not

'One can also perform AT using (2) via bi-level optimization; see,
e.g., [33].

only solves (1) effectively with ¢;, {5 and /., distances,
but can also handle general £, (p > 1) distances and more
beyond, such as perceptual distances (PD) [16]. We also
find that PWCEF can easily adapt to solving (2) based on the
techniques introduced in [18].

Our contributions In this paper, we consider the existing
numerical methods (APGD, FAB, and PWCEF) for (1) and
(2). We compare the sparsity patterns of their solutions using
different solvers, losses, and distance metrics. And then we
discuss the implications on RE and AT:

1. Different combinations of distance metrics d, losses ¢,
and optimization solvers used to solve (1) and (2) can in-
duce different sparsity patterns in the solutions found. In
terms of computing robust accuracy, combining solutions
with all possible patterns is important to obtain a reliable
and accurate result.

2. Robust accuracy at a preset perturbation level € used
in RE is a bad metric to measure robustness: a model
achieves better robust accuracy than other models at one
level does not imply that the model can obtain a superior
one than other models at other levels; see Fig. 1. in [26].
Instead, performing RE via (2) can be more beneficial, as
the sample-wise robustness radius found contains richer
information.

3. Due to the pattern difference in solving (1) by different
combinations of solvers, losses, and distance metrics, the
common practice of AT (3) with PGD on a single dis-
tance metric may not be able to achieve generalizable
adversarial robustness at all—adversarially trained mod-
els may only be robust to the patterns they have seen
during training.

Although previous works, e.g., [3, 7, 10], have mentioned
the necessity of involving diverse solvers to achieve more
reliable RE, our paper is the first to quantify the meaning of
diversity in terms of the sparsity patterns to our knowledge.
We refer the reader to [ 19] for a more comprehensive version
of this paper.

2. A brief overview of PWCF

A powerful general-purpose constrained optimization
solver for deep learning problems General nonlinear
optimization (NLOPT) problems take the form [1]:
min g(x)
* (6)
s.t. ¢i(x) SOVieZ; hj(x) =0V e,

where g(-) is a continuous objective function; ¢;’s and h;’s
are continuous inequality and equality constraints, respec-
tively. PyGRANSO? [8, 17] is a recent Py Torch-port of the

Znttps://ncvx.org
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Figure 1. Robustness radius (y-axis) found by solving (2) using
PWCEF with perceptual distance on 85 ImageNet-100 images. The
x-axis are the image indices. The red dashed line is the proposed
budget € = 0.5 used in [16] for PAT (1).

powerful MATLAB package GRANSO [£] that can handle
general NLOPT problems of form (6) with non-differentiable
g, ¢;’s, and h;’s, equipped with auto-differentiation and GPU
acceleration. PWCF blends PyGRANSO with constraint-
folding and other beneficial techniques, and can handle a
wide range of NLOPT problems in deep learning, such as
(1) and (2). We refer the readers to [17, 18] for more details.

Solving (1) and (2) with perceptual distance (PD) Here
we briefly demonstrate the ability of PWCEF in solving (1)
and (2), using PD as an example. We consider the following
PD [32]:

d(z, x') = ||¢(x) — ()|,

where ¢(x) =[g1(x),...,g0(x) ] @

where g1 (), . . ., g1 () are the vectorized intermediate fea-
ture maps from pre-trained DNNSs (e.g., AlexNet). [16] first
proposed solving (1) with PD at ¢ = 0.5 as a new form of
adversarial attack (termed perceptual attack (PAT)). In [16],
three methods are proposed to solve it: 1) Perceptual Pro-
jected Gradient Descent (PPGD) which is based on iterative
linearization and projection; 2) Lagrangian Perceptual At-
tack (LPA) which is a penalty method with iterative projec-
tions; 3) a variant of LPA without projection (Fast-LPA). For
(2), no existing work has considered solving it with PD.
Here, we show in Fig. 1 the robustness radii® found by
PWCEF in solving (2) on 85 ImageNet-100 images. Com-
pared to the preset € used in [16], much smaller radii for
every sample are found by PWCF. We can conclude that: 1)
PWCEF solves (2) reasonably well; 2) the choice of ¢ is too
large to be a reasonable distance budget in (1). Next, we
solve (1) on the ImageNet-100 validation set with € = 0.5%,
reporting both the attack success rate and the constraint vio-
lation rate. According to Fig. 1, the sample-wise robustness
radius is much smaller than 0.5, indicating that effective
solvers are expected to achieve 100% attack success rate
with 0% violations. As shown in Tab. 1, PWCF with margin

3We use the ‘pat_alexnet_0.5.pt> from https://github.com/
cassidylaidlaw/perceptual-advex, where the authors tested
and showed its £o- and £ - robustness in the original work.

4Using the same adversarially pretrained model as in Fig. 1

cross-entropy loss margin loss

Method Viol. (%) | Att. Succ. (%) 1  Viol. (%) | Att. Succ. (%) T
Fast-LPA 73.8 3.54 41.6 56.8
LPA 0.00 80.5 0.00 97.0
PPGD 5.44 25.5 0.00 38.5
PWCF (ours) 0.62 93.6 0.00 100

Table 1. Performance comparison of solving (1) with the perceptual
distance, using cross-entropy and margin losses, respectively. Viol.
reports the ratio of final solutions that violate the constraint; Att.
Sucec. is the ratio of all feasible and successful attack samples di-
vided by total number of samples—higher indicates more effective
optimization performance.

Figure 2. The ‘fish’
image example from
Imagenet-100 valida-
tion set that is used to
generate the pattern vi-
sualizations in Fig. 3
and Fig. 4.

loss is the only one that meets this standard and is clearly
the best.

3. Different combinations of /, d, and the solvers
prefer different solution patterns

We now demonstrate that using different combinations of
1) distance metrics d, 2) solvers, and 3) losses £ can lead to
different sparsity patterns in the following two ways:

1. Visualization of perturbation images: we take a ‘fish’
image (Fig. 2) from the ImageNet-100 validation set, em-
ploy various combinations of losses ¢, distance metrices
d and solvers to (1) and (2). Fig. 3 and Fig. 4 visual-
ize the perturbation image ' — @, and the histogram of
the element-wise error magnitude |’ — x| to display the
difference in pattern.

2. Statistics of sparsity levels: we use the soft sparsity
measure ||z’ — x|/, /||’ — x|, to quantify the patterns—
the higher the value, the denser the pattern. Fig. 5 and
Fig. 6 display the histograms of the sparsity levels of the
error images derived by solving (1) and (2), respectively.
Here, we used a fixed set of 500 ImageNet-100 images
from the validation set.

Contrary to the ¢; distance that induces sparsity, £, pro-
motes dense perturbations with comparable entry-wise mag-
nitudes [27] and /5 promotes dense perturbations whose
entries follow power-law distributions. These varying spar-
sity patterns due to d’s are evident when we compare the
solutions with the same solver and loss but with different
distances, where 1) the shapes of the histograms in Fig. 4
and the ranges of the values are very different; 2) the sparsity
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turbation images by solving (1)
with ¢; distance, cross-entropy
and margin losses, and different
solvers (APGD and PWCEF). The
top are the perturbation images
«’ — x, which have been normal-
ized to the range [0, 1] for better
visualization; the bottom are the
histograms of the element-wise
perturbation magnitude |z’ — x|,
where the x-axes are the absolute
pixel values.
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Figure 4. Visualizations of perturbation images (&’ — @, top row) and the histogram of element-wise perturbation magnitude (|’ — x|,
bottom row) by solving (2). Note that the comparison between FAB and PWCF may not be as straightforward as Fig. 3 because the radii
found by solving (2) are likely different in scale. However, the shape of the histograms can still reveal the pattern differences.

measures show a shift from left to right along the horizontal
axis in Fig. 5 and Fig. 6. In addition to d’s, we also highlight
other patterns induced by the loss ¢ and the solver:

* Using margin and cross-entropy losses in solving (1)
induce different sparsity patterns Columns ‘cross-
entropy’ and ‘margin’ of PWCF in Fig. 3 depict the pattern
difference with clear divergences in the histograms of error
magnitude; for example, the error values of PWCF-cross-
entropy are more concentrated towards 0 compared to
PWCF-margin. The sparsity measures in Fig. 5 can further
confirm the existence of the difference due to the loss used
to solve (1), more for PWCF than APGD.

¢ PWCF’s solutions have more variety in sparsity than
APGD and FAB  For the same d and loss used to solve
(1), Fig. 5 shows that PWCF’s solutions have a wider
spread in the sparsity measure than APGD. The same
observation can be found in Fig. 6 as well between PWCF
and FAB in solving (2).

Here, we provide a conceptual explanation of why differ-
ent sparsity patterns can occur. We take the /; distance (i.e.,
le — 2'||; < ¢€) and ignore the box constraint ' € [0, 1]
in (1) as an example. For simplicity, we take 0/1 classifica-
tion error £(y, fo(x')) = 1 {max; f§(x') # y} as the loss

(. Note that ¢ is maximized whenever fj(z') > f5(x') fora
certain ¢ # y, so that &’ crosses the local decision boundary
between the ¢-th and y-th classes; see Fig. 7 (a). In practice,
people set a substantially larger perturbation budget in (1)
than the robustness radius, which can be estimated by solv-
ing (2)—see Fig. 7 (b). Thus, there can be infinitely many
global maximizers (the shaded blue regions in Fig. 7 (a)).
As for the patterns, the solutions in the shaded blue region
on the left are denser in pattern than the solutions on the top.
For other general losses, such as cross-entropy or margin
loss, the set of global maximizers might change, but the pat-
terns can possibly be more complicated due to the typically
complicated nonlinear decision boundaries associated with
DNNSs. As for (2), multiple global optimizers and pattern
differences can exist as well, but the optimizers share the
same radius.

4. Implications from the different patterns
4.1. Current empirical RE may not be sufficient

As introduced in Sec. 1, the most popular empirical RE
practice currently is solving (1) with a preset level of ¢,
using a fixed set of algorithms. Then robust accuracy is
reported [4,22,25]. Here, we challenge its validity for mea-
suring robustness.
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Figure 6. Histograms of the sparsity measure by solving (2) with different d’s (¢1, ¢2 and /). Under the same solver (FAB or PWCF), the
shift of solution patterns from sparse to dense due to d is obvious. Given the same d, the solutions of PWCF have more variety in sparsity
than those of FAB, showing the influence of the solver on the solution patterns.
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Figure 7. (a): geometry of (1) with multiple global maximizers. u
and v are the basis vectors of the 2-dimensional coordinate. Here
we consider the ¢; ball around @, and ignore the box constraint
' € [0, 1]™. Depending on the loss £ used, part or the whole of the
blue regions becomes the set of global or near-global maximizers.
(b): histogram of the ¢ robustness radii estimated by solving (2)
for 88 CIFAR-10 images. € = 12 (red dashed line) is the typical
preset perturbation budget used in (1).

Diversity matters for robust accuracy to be trustworthy
As shown in Sec. 3, the perturbations found by different
numerical methods can have different sparsity patterns. This
implies that for robust accuracy to be numerically reliable,
including as many solvers to cover as many patterns as possi-
ble is necessary. Although works as [3,7, 10] have mentioned
the necessity of diversity in solvers, our paper is the first to
quantify such diversity in terms of sparsity patterns from
their solutions. However, the existence of infinitely many
patterns may be possible. Thus, it is also possible that faith-
ful robust accuracy may not be able to achieve in principle.

Robust accuracy is not a good robustness metric The
motivation for using (1) for RE is usually associated with the
attacker-defender setting, where solutions (') are viewed
as a test bench for all possible future attacks. Ideally, the
DNNs must be robust against all adversarial samples found.
However, it is questionable whether robust accuracy faith-
fully reflects this notion of robustness: 1) why the commonly
used attack budget ¢ is a reasonable choice needs to be justi-
fied. For example, ¢ = 0.03 is commonly used for the ¢,
distance, e.g., in [4]. We could not find rigorous answers in
the previous literature and suspect that the choices are purely
empirical. For example, [4] states the motivation as “...the
true label should stay the same for each in-distribution input
within the perturbation set...” but this claim can also support
using other values; 2) more importantly, Fig. 1. in [26]
shows that a model having a higher robust accuracy than
other models at one ¢ level does not imply that such a model
is also more robust at other levels. The clean-robust accu-
racy trade-off [24,31] may also be interpreted similarly>—
they are just most robust to different € levels. Thus, robust
accuracy is not a complete and trustworthy measure, and
conclusions about robustness drawn from robust accuracy
based on a single ¢ level are misleading. Robustness ra-

SThe clean-robust accuracy trade-off refers to the phenomenon where a
non-adversarially trained model has the best clean accuracy (at level € = 0)
and the worst robust accuracy (at the commonly used €), and vise versa for
the adversarially trained models.
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solvers (APGD with cross-entropy loss, LPA and PWCF). LPA-PD-/; is the perceptual attack used in [

]. Using the PD in (1) also results

in different sparsity patterns due to the solver and the inner ¢,, distance used (see PD-{2, PD-¢; related figures above).

dius is a better robustness measure If our goal is indeed
to understand the robustness limit of a given DNN model,
solving (2) seems more advantageous, especially that:

1. Robustness radius is more reliable: unlike that the
pattern differences in solving (1) can lead to unreliable
robust accuracy due to possibly multiple solutions, the
robustness radius found by solving (2) is not sensitive to
the existence of multiple solutions.

2. Robustness radius is sample adaptive: in contrast to
the rigid perturbation budget € used in (1), the robustness
radius is the sample-wise distances to the closest decision
boundaries.

A clear application of the robustness radius is that we can
identify hard (less robust) samples for a given model if the
corresponding robustness radii are small.

4.2. Adversarial training may not help to achieve
generalizable robustness

Solution patterns can explain why /,, robustness does not
generalize Despite the effort of finding ways to achieve
generalizable AR, it is widely observed that AR achieved by
AT does not generalize across simple £, distances [5,21]. For
example, models adversarially trained by ¢, -attacks do not
achieve good robust accuracy with £5-attacks; £1 seems to be
a strong attack for all other £,, distances, and even on itself.
Note that [20] has observed that the (approximate) global
maximizers are distinct and spatially scattered; the patterns
we discussed in Sec. 3 provide a plausible explanation of
why AR achieved by AT is expected not to be generalizable—
the model just cannot perform well on an unseen distribution
(patterns) from what it has seen during training.

Adpversarial training with perceptual distances does not
solve the generalization issue [10] claims that using PD
(Eq. (7)) in (1) can approximate the universal set of adversar-
ial attacks, and models adversarially trained with PAT can
generalize to other unseen attacks. However, we challenge
the above conclusion: ‘unseen attacks’ does not necessarily
translate to ‘novel perturbations’, especially if we investigate
the patterns:

1. If we test the ¢5 and PAT pre-trained models® in [16]
by APGD-CE-¢; (¢ = 1200) attack (on ImageNet-100
images), both will achieve 0% robust accuracy—PAT
pretrained models do not generalize better to ¢, attacks
compared with others.

2. By investigating the sparsity patterns similar to Sec. 3, the
adversarial perturbations generated by solving (1) with
PD are shown to be similar to the APGD-CE-/¢, generated
ones, see (a)-(d) in Fig. 8. This may explain why the /5
and PAT pre-trained models in [16] have comparable
robust accuracy against multiple tested attacks.

3. Substituting the ¢ distance by the ¢; distance in Eq. (7)
as the new PD:

d(z, z') = ||¢(x) — o), - ®)

the solution patterns will change; see (e)-(f) in Fig. 8.
Furthermore, (d)-(e) in Fig. 8 also shows that different
solvers (LPA and PWCF) will also result in different
patterns even for PD—PAT will likely suffer from the
pattern differences the same way as popular /,-attacks,
thus not being ‘universal’.

To conclude, we think that it is unclear so far whether using
the perceptual distances in the AT pipeline can be beneficial
in addressing the generalization issue in robustness.

5. Summary

In this paper, we briefly introduce PWCEF, a general-
purpose nonlinear optimization solver that can handle (1)
and (2) with general distance metrics. Taking advantage
of the existing numerical solvers, we observe that apply-
ing different combinations of losses ¢, distance metrics d
and solvers to these two formulations can lead to different
sparsity patterns in the solutions. Having provided our expla-
nations on why pattern difference can occur, we then discuss
the implications on adversarial robustness: 1) the current
practice of RE based on solving (1) can be insufficient and
misleading; 2) finding the sample-wise robustness radius by
solving (2) can be a better robustness metric; 3) achieving
generalizable robustness via the current practice of AT is
intrinsically difficult.

6Correspond to /2 and PAT-AlexNet in Table 3 of [16]
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