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Abstract

Despite the record-breaking performance in Text-to-
Image (T2I) generation by Stable Diffusion, less research
attention is paid to its adversarial robustness. In this
work, we study the problem of adversarial attack generation
for Stable Diffusion and ask if an adversarial text prompt
can be obtained even in the absence of end-to-end model
queries. We call the resulting problem ‘query-free attack
generation’. To resolve this problem, we show that the vul-
nerability of T2I models is rooted in the lack of robustness of
text encoders, e.g., the CLIP text encoder used for attacking
Stable Diffusion. Based on such insight, we propose both
untargeted and targeted query-free attacks, where the for-
mer is built on the most influential dimensions in the text
embedding space, which we call steerable key dimensions.
By leveraging the proposed attacks, we empirically show
that only a five-character perturbation to the text prompt
is able to cause the significant content shift of synthesized
images using Stable Diffusion. Moreover, we show that
the proposed target attack can precisely steer the diffusion
model to scrub the targeted image content without causing
much change in untargeted image content.

1. Introduction

Diffusion models (DMs), the recently predominant gen-
erative modeling technique, have been used in a wide range
of computer vision (CV) applications. Examples include
Text-To-Image (T2I) generation [1-5], adversarial robust-
ness [6—8], and image reconstruction [9, 10]. In this paper,
we focus on DM for T2I generation. The key idea follow-
ing [1] is to start from a noisy input and then iteratively
refine it through a pre-trained representation network, e.g.,
CLIP (Contrastive Language-Image Pretraining) [11] that
connects texts and images. The above pipeline allows the
use of various ‘text prompts’ (i.e., natural language inputs
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Figure 1. An illustration of our attack method against Stable Diffusion.
The generated perturbations are highlighted in blue. The targeted attack
aims to erase the image content related to ‘young man’ highlighted in red.
All the images are generated from the same seed.

served as instructions of DM) to effectively control the con-
tent of the synthesized images [3, 12].

However, several works [ 15—18] showed that adversarial
perturbations (in terms of small textual/visual input pertur-
bations [19, 20]) can significantly impair the performance
of a CLIP model, and thus induce the adversarial robust-
ness concern of its downstream applications. Inspired by
the above, our interest in this paper is to investigate the
adversarial robustness of T2I generation using CLIP-based
DM:s, i.e., Stable Diffusion [1] in this work. In particular,
we ask:

(Q) Can we generate adversarial perturbations
against T21 models in a query-free regime?

Adversarial attacks (also known as adversarial perturba-
tions or examples) that can cause models’ erroneous pre-
diction have introduced immense research efforts in both vi-
sion and language domains [ 19-23]. A few recent attentions
were also paid on T2I models [14, 24] as different from or-
dinary vision or language models, the latter adopts a natural
language prompt to influence its imagery output. The con-
trollability and flexibility of adjusting text prompts provide
a new way to interact with a model. In [24], model query-
based adversarial attacks were proposed for T2I models.
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Figure 2. Illustration of robustness issue in CLIP text encoder for image generation. CLIP score [13,

] measures the similarity between

the image-text pair provided by the CLIP model, while ‘Cos’ measures the cosine similarity between two CLIP embeddings.

Yet, this work calls for many model queries (10000 queries
per attack) to find a successful adversarial prompt, e.g., us-
ing 4 newly generated words integrated into the original tex-
tual input. By contrast, our work focuses on guery-free at-
tack generation and the perturbation is constrained to only
five characters. In [14], a gradient-based optimization was
proposed to generate proper prompts that can match given
images or sentences. Although it also demonstrates the con-
trollability of image outputs by textual input prompts, little
attention was paid to adversarial robustness.

To be specific, our contributions are unfolded below.

@ We develop a query-free adversarial attack genera-
tor for T2I DMs. We show that a five-character perturba-
tion, determined by text embeddings of CLIP, is able to sig-
nificantly alter the content of DM-synthesized image (see
Fig. 1b for an illustration).

@ We provide an analysis of the correspondence between
the semantics of synthesized images and the embeddings of
CLIP. The obtained insight further drives us to develop a
controllable “targeted” attack, where the perturbations can
be refined to steer the DM’s output (see Fig. 1c for an illus-
tration).

® We empirically show the effectiveness of our proposal
across three attack implementation methods on a variety
of text-image pairs. In particular, we demonstrate that the
both the proposed untargeted and targeted Query-Free At-
tack can successfully alter the output image content using
only a 5-character prompt perturbation. This achievement
is also reflected by the significantly reduced CLIP scores of
the outputs.

2. Related Work

Adversarial attacks. Adversarial attacks typically de-
ceive DNNs by integrating carefully-crafted tiny perturba-
tions into input data [19, 25-36]. Based on how an ad-
versary interacts with the victim model, adversarial attacks
can be categorized into white-box attacks (with full ac-
cess to the victim model based on which attacks are gener-
ated) and black-box attacks (with access only to the victim
model’s input and output). The former typically leverages
the local gradient information of the victim model to gen-

erate attacks, e.g., [19, 25, 26], while the latter takes input-
output model queries for attack generation; Examples in-
clude score-based attacks (e.g., [31-33]) and decision-based
attacks (e.g., [34-36]). In this work, we assume that the
adversary has access to the CLIP text encoder but can be
blind to the diffusion model for image generation. Our goal
is to design an adversarial attack to fool the stable diffu-
sion model without executing the diffusion process, which
would take a high model query and computation cost. Thus,
we term our proposal the ‘query-free attack’.

Prompt perturbations in vision-language models. Re-
cent studies [14, 24, 37] have explored the over-sensitivity
of text-to-image diffusion models to prompt perturbations
in the text domain. The adversarial robustness problem of
CLIP was also studied in [ 15-18], such as the design of im-
perceptible pixel perturbations [15, 16] and attacks in the
image frequency domain [17]. Yet, the previous studies fo-
cused on perturbations to image inputs of CLIP, it lacks in-
vestigation into how the textual perturbation to CLIP can
influence the T2I diffusion model.

3. Our Proposal

Problem statement. In this section, we first present an
overview of Stable Diffusion, and then introduce our objec-
tive to generate small perturbations on the textual inputs so
as to maneuver the DM’s synthesized images.

We choose Stable Diffusion as the victim T2I DM model
due to its popularity and availability as an open-source
model. In Stable Diffusion, the DM denoises images in la-
tent space and utilizes a cross-attention mechanism to guide
the denoising process. In addition, text inputs (or textual
prompts) are processed by the CLIP’s text encoder to gener-
ate text embeddings and are then sent to the cross-attention
layer in the denoising network. This eventually determines
the synthesized images based on the CLIP’s textual embed-
dings and the selected random seed of the initial noisy pix-
els. However, as exemplified in Fig. 2, small perturbations
on the text input of CLIP can lead to different CLIP scores
[13, 14], given by the values of cosine similarity of every
text-image input pair. This is because of the sensitivity of



the CLIP’s text embedding to text perturbations. Based on
that, we ask: Can we generate an adversarial textual prompt
by leveraging the lack of robustness of the CLIP’s text en-
coder so as to fool the DM-based image generator in Stable
Diffusion?

Attack model. We assume that the adversary has access
to the trained text encoder of the CLIP model, and can per-
turb the textual prompt of the trained State Diffusion model
using an additional word within a five-character length. Let
To(x) denote the text encoder of CLIP with parameters 6
evaluated at the textual input x. And we denote by x’ the
perturbed textual prompt used as the input of Stable Diffu-
sion. We then define the attacker’s objective by minimizing
the cosine similarity between the text embeddings of x and
x’. This leads to the following attack generation problem

min cos(7g(x), 79(z')), (1)

where cos refers to the cosine similarity metric.

Despite the simplicity of the attack generation in (1), we
will show that it can be used to attack State Diffusion in a
targeted way effectively. More importantly, the generation
of the perturbed input x’ no longer relies on the optimiza-
tion over the diffusion model, and can thus be computation-
ally efficient. This is in contrast to [20], which requires
10000 queries to diffusion model for generating a single at-
tack. Since no attack intention is specified in (1), we call
the resulting attack an ‘untargeted attack’.

Attack methods. Since problem (1) is differentiable, var-
ious optimization methods can be adopted for attack genera-
tion. Inspired by the previous studies on adversarial attacks
in the language domain, we consider the following attack
methods.

PGD attack. Similar to the PGD (projected gradient de-
scent) attack [26] in the image domain, the PGD attack in
the language domain has also been developed [23, 38]. The
key idea is to formulate the textual perturbation problem as
a token selection problem (over a set of token candidates)
when a token site is determined for perturbation. Our ex-
periments follow the PGD implementation in [23] to solve
problem (1).

Greedy search. Different from the above PGD attack,
we next consider a heuristics-based perturbation strategy.
We conduct a greedy search on the character candidate set
to select the top 5 characters (used for textual perturbation),
which can reduce the loss of (1) to the maximum extent.

Genetic algorithm. We follow [39] to generate a popu-
lation of perturbation candidates and use the loss of (1) to
evaluate the quality of each candidate. In each iteration, the
genetic algorithm calls genetic operations such as mutation
to generate new candidates. The process continues until the
number of generations is met.

Targeted attack and steerable key dimensions. In what
follows, we investigate if the attack generated by (1) can
be further refined towards a targeted attack purpose, e.g.,
the intention of removing the ‘young man’-related image
content from the original image in Fig. 1-(c) vs. (a). To
this end, we propose a new concept termed steerable key
dimensions in the text embedding space, along which the
attack generator can be guided to design customized textual
perturbations. By constraining the perturbations on these
steerable key dimensions, we can improve the likelihood of
image generation following the adversary’s intention.

To be specific, we first generate a sequence of augmented
sentences {s; }_, that reflect the adversary’s intention, e.g.,
the sentences centered on ‘a young man’ in Fig. [-(a). The
generation of {s;}" ; can be realized using e.g., Chat-
GPT by requesting ‘Generate n simple scenes and end with
“and a young man” without extra words’. Two examples
are s; = ‘A bird flew high in the sky and a young man’ and
so = ‘The sun set over the horizon and a young man’ with
n = 2. Next, we perturb {s;}I, by removing the
adversary’s intention-related sub-sentence (i.e., ‘a young
man’ in Fig. I-(a)). This results in a modified sequence
{s;}%_,; For example, s; = ‘A bird flew high in the sky’
and s, = ‘The sun set over the horizon’. We then ob-
tain the corresponding CLIP embeddings {7¢(s;)}?~, and
{m0(s;)}7,. As a result, the text embedding difference
d; = 79(s;) — 7o(s}) can characterize the saliency of the
adversary’s intention-related sub-sentence in the text em-
bedding space. For n such difference vectors {d;}?_;, we
determine the steerable key dimensions for targeted attack
generation by identifying the most influential dimensions in
the difference vectors {d;}? ;. The dimension influence
is given by a majority vote of {d;}?_, along each dimen-
sion. Thatis, I; = 1 (i.e., the indicator of the jth dimen-
sion being influential), if | Y., sign(d; ;)| > en, where
sign is the sign operation, d; ; is the jth entry of d;, and
€ < 1is a threshold to pick the most influential dimensions.
As a result, the binary vector I encodes the selected key
dimensions. By integrating I into (1), we obtain the key
dimensions-guided targeted attack generation

min cos(7p(x) © I, 7p(x") © T), (2)

where © is the element-wise product. Note that problem
(2) can be similarly solved as (1) using the attack methods
introduced before. Fig. 1-(c) shows an example of using
prompt perturbations generated by the proposed targeted at-
tack to erase the image content related to ‘a young man’.

4. Experiment
4.1. Experiment setups

Model setup. Throughout the experiments, we use Sta-
ble Diffusion model v1.4 [1] as the victim model for image
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Figure 3. Illustrations of the effect of untargeted query-free attacks. In each group, the first row of images is generated using the original
prompts vs. the second row using the perturbed ones. The perturbations found by our method are highlighted in blue in the prompt. Images
in the same column share the same random seed.
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Figure 4. Illustrations of the effect of rargeted query-free attacks. Input perturbations are generated to modify/remove the red text-related
image content. Other settings are aligned with Fig. 3. Adversary targets for erasing (a) the ‘bike’, (b) the ‘plate’, (c) the ‘lake’, (d) the
‘leaf’, (e) the ‘flower’, (f) the ‘basket’, (g) the ‘field’, and (h) the ‘snowflake’ without altering the other semantics much.

generation. The proposed query-free attack has the access
to the CLIP model (ViT-L/14) that shares the same text en-
coder as Stable Diffusion. The CLIP model is trained on a

dataset containing text-image pairs [40].

Attack implementation.

When implementing the PGD

attack method, we set the base learning rate by 0.1 and the
number of PGD steps by 100. When implementing the ge-
netic algorithm, we set the number of generation steps, the
number of candidates per step, and the mutation rate by 50,
20, and 0.3. When implementing the targeted attack, we use



Table 1. CLIP scores [13, 14] comparison of images generated
with different methods. CLIP scores are used to indicate the sim-
ilarity between the generated images and the embeddings of the
corresponding text prompts. For each method, the CLIP scores
reported below are averaged over 20 prompts and 10 images per
prompt. In particular, the scores calculated based on the original
sentences and output images are adopted for the untargeted attack
and based on the targeted content and output images for the tar-
geted setting. The lowest (best) score in each row is in bold and
the results in the form a4b denote the mean value a and the standard
deviation b.

Method: | No Attack | Random | Greedy | Genetic | PGD
Untargeted Attack
Score: | 027740022 | 0.271+0.021 | 0.255£0.039  0.203:£0.042 | 0.2260.041
Targeted Attack

Score: | 0.229+0.03 | 0.223+0.037 | 0.204+£0.037  0.186:+0.04 | 0.189+0.041

ChatGPT [41] to generate n = 10 sentences to characterize
the steerable key dimensions and set ¢ = 0.9 to determine
the influence mask 7 in (2). In addition, we utilize ChatGPT
generating 20 prompts forming an input text dataset for the
quantization by requesting ‘Generate 20 simple scenes for
text-to-image generative model’.

Evaluation metrics. In addition to different implementa-
tions of our proposed query-free attack (i.e., PGD, Greedy,
and Genetic methods), we also introduce a baseline that
randomly generates random five-character prompt pertur-
bations, termed Random. We evaluate the effectiveness of
an attack using the CLIP score [13, 14] to characterize the
similarity between the text input and the generated image.
A lower CLIP score represents a lower semantic correlation
between the generated image and the input text, indicating
the higher effectiveness of the attacking method. To quan-
tify the CLIP score between the targeted objects and images
generated in the targeted attack setting, we utilized the tem-
plate sentence “This is a photo of” [1 1] as text input to mea-
sure text-image pair similarity. The CLIP score reported for
each method will be averaged over 20 prompts, based on
each of which 10 images will be generated.

4.2. Experiment results

Query-free attack can successfully alter the image out-
put of Stable Diffusion using only a 5-character prompt
perturbation. In Fig.3, we present examples of text-to-
image generation with and without suffering prompt per-
turbations generated by the untargeted, genetic algorithm-
based query-free attack. The 5-character prompt perturba-
tion is highlighted in blue with gray background. As we
can see, the proposed attack can significantly alter the con-
tent of the original image produced by Stable Diffusion. For
example, in Fig. 3-(a), the perturbation ‘E$9\’ * drives the
model to generate images far from the true topic ‘bicycle’.
The same observation can also be drawn from examples in

Table 2. CLIP scores [13, 14] comparison of different perturbation
prompts in case study. For each prompt, the CLIP scores reported
below are averaged over 10 images from the same seeds. The
lowest (best) score in each row is in bold.

Perturbation prompt: | None | ‘E$9\’’ | ‘E’ | ‘WALLE’ | ‘-E’
Score: 0293 | 0217 | 0297 | 0291 | 0285

Fig. 3-(b)-(h). This implies that the attack against the text
embedding remains effective in manipulating the output of
text-to-image generation.

Similar to Fig.3, Fig.4 presents examples of targeted,
genetic-based query-free attacks against Stable Diffusion.
For example, in Fig.4-(a), the adversary targets perturb-
ing ‘bicycle’ without altering the background ‘brick wall’
much. This contrasts to Fig.3-(a), where the image ob-
ject and scene may change. Another example is Fig. 3-
(b), where the object ‘plate’ is erased using the perturbed
prompt but the object ‘apple’ is retained. We can also draw
similar observations from other examples. Briefly, the tar-
geted attack can precisely manipulate the diffusion model
to avoid the targeted semantics (i.e., the red text highlight
above each image example in Fig. 4), while can retain the
irrelevant semantics (e.g., ‘brick wall’ in Fig. 3-(a)).

Query-free attack can effectively reduce the CLIP score.
To quantify the influence of the attack in each generated
text-image pair, Table 1 presents the CLIP scores [13, 14]
of the image pairs generated by Stable Diffusion with and
without the attack’s perturbations. In Table 1, we can make
the following observations. First, in the untargeted attack
setting, it is clear that different attack methods can all suc-
cessfully reduce the CLIP score versus the baseline result
using ‘No Attack’ or ‘Random’ attack strategy. Such a re-
duction implies a relatively low similarity between the per-
turbed text input and the generated image and justifies the
image content modification observed in Fig.3. Moreover,
the genetic algorithm outperforms the other attack meth-
ods. This also supports the choice of genetic algorithm-
based untargeted attack in Fig.3. Second, in the targeted
attack scenario, the PGD attack method and the genetic al-
gorithm outperform other attack methods. We also notice
that the targeted attack setting introduces additional diffi-
culty for effective perturbation generation, evidenced by the
smaller drop in the CLIP score compared to the untargeted
setting.

Why does the perturbation work? A case study on
‘WALL-E’. To demonstrate the effectiveness of our at-
tacks, we conduct an ablation experiment to compare the
perturbations generated by our method and a direct change
in textual semantics. Recall from Fig. 3-(a) that the gen-
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Figure 5. Ablation study for the perturbation word generating
robots in Fig. 3.

erated perturbation ‘E$9\’ * appended to the sentence ‘A
black bicycle against a brick wall’ seems related to a robot
movie ‘WALL-E’'. We wonder if this is due to the effect
of the combination between ‘wall’ in the original text in-
put and the added letter ‘E’ in the generated perturbation
‘E$9\" °. To this end, we conduct additional experiments
to explicitly append the letter ‘E’ to the end of the original
text input. Fig. 5 shows that simply adding ‘E” or “‘WALLE’
fails to alter the image content (see the first two rows of
Fig. 5). Although replacing ‘wall’ with ‘wall-E’ in the orig-
inal sentence may produce a robot-related image, the suc-
cess of such image generation remains low. This trend is
also supported by the corresponding CLIP scores reported
in Table 2, where almost no change can be observed (see
0.293 vs. {0.297,0.291,0.285}). By contrast, the use of
prompt perturbation ‘E$9\’ * in Fig. 3-(a) is much more ef-
fective in altering the image content (see a CLIP score drop
from 0.293 to 0.217 in Table 2.

5. Conclusion

In this study, we leverage the susceptibility of the pre-
trained CLIP text encoder (to input perturbations) to design
a query-free adversarial attack against the Stable Diffusion
model for text-to-image generation. In addition to untar-
geted attacks, we also develop a targeted attack method by
exploring and exploiting the influential dimensions (that we
call steerable key dimensions) in the text embedding space
so as to enable targeted content manipulation in the syn-
thesized images. Our experiments have shown that a five-
character prompt perturbation could have been effective in
attack Stable Diffusion models.

Ihttps://en.wikipedia.org/wiki/WALL-E.
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