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Abstract
Significant advances have been made in recent years in

improving the robustness of deep neural networks, particu-
larly under adversarial machine learning scenarios where
the data has been contaminated to fool networks into making
undesirable predictions. However, such improvements in
adversarial robustness has often come at a significant cost
in model accuracy when dealing with uncontaminated data
(i.e., clean data), making such defense mechanisms challeng-
ing to adapt for real-world practical scenarios where data
is primarily clean and accuracy needs to be high. Motivated
to find a better balance between adversarial robustness and
clean data accuracy, we propose a new model-agnostic ad-
versarial defense mechanism named Dual-model Bounded
Divergence (DBD), driven by a theoretical and empirical
analysis of the bias-variance trade-off within an adversar-
ial machine learning context. More specifically, the pro-
posed DBD mechanism is premised on the observation that
the variance in deep neural networks tends to increase in
the presence of adversarial perturbations in the input data.
As such, DBD employs a gating mechanism to decide on
the final model prediction output based on a novel dual-
model variance measure (coined DBD Variance), which is
a bounded version of KL-Divergence between models. Not
only is the proposed DBD mechanism itself training-free, but
it can be combined with existing adversarial defense mech-
anisms to boost the balance between clean data accuracy
and adversarial robustness. Comprehensive experimental
results across over 10 different state-of-the-art adversarial
defense mechanisms using ImageNet benchmark datasets
across different adversarial attacks (e.g., APGD, AutoAttack,
and FAB) demonstrate that the integration of DBD can lead
to as much as a 6% improvement on clean data accuracy
without compromising much on adversarial robustness.
1. Introduction

A perturbation ϵ in a specific direction added to the input
sample fools the model, which results in an incorrect predic-
tion; this process can be applied in both classification [9, 11]
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Figure 1: Overview of the proposed DBD defense mecha-
nism. The DBD Variance is computed between the softmax
outputs of an adversarially trained model (robust model) and
a conventionally trained model (non-robust model) and a
score is produced. Based on the score, a gating mechanism
is used to decide whether the final model prediction is based
on the output of the robust model or that of the non-robust
model.

or regression problems [1, 12]. In this regard, perturba-
tion ϵ is imperceptible by a human eye and is enforced by
bounding the norm of ϵ when generated. Szegedy et al. [11]
introduced this drawback for deep neural networks in their
seminal paper.

In this study, we propose an unsupervised algorithm,
called Dual-model Bounded Divergence (DBD), to address
the issue of reduced accuracy on clean data while maintain-
ing robust accuracy against adversarial datasets. DBD is a
novel yet straightforward approach, illustrated in Figure 1,
that can be seamlessly integrated with various robust models
to enhance clean accuracy while imposing minimal compu-
tational complexity compared to that imposed by adversarial
attacks. Our results demonstrate that the proposed DBD
framework can increase clean accuracy by up to 6% while
maintaining model robustness. Moreover, DBD offers a
hyperparameter threshold that enables a trade-off between
clean and robust accuracy, making it flexible in determining
which performance to prioritize.

To fully leverage the variance measure in the DBD frame-
work and maintain the algorithm’s unsupervised and model-
agnostic nature, we could not utilize some of the measures
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proposed in prior research that rely on unbounded measures
like KL-Divergence [14]. Consequently, we introduce a
new variance measure called DBD Variance in this study.
This measure is bounded and does not result in data leakage.
The inspiration for DBD Variance comes from a recently
developed bounded version of KL Divergence (bounded KL
Divergence) [2].

The main contributions of the proposed work are as fol-
lows:

• A novel unsupervised Dual-model Bounded Divergence
(DBD) framework is proposed as a post-processing
step to increase the performance of a robust model on
clean data while maintaining robust accuracy with a
negligible difference.

• A new dual-model measure for computing variance in
practice based on a bounded version of KL-Divergence
is proposed, which does not compromise model accu-
racy and does not cause data leakage problems during
test time.

2. Methodology
One of the main problems in adversarial training is a

drastic drop of accuracy over clean data, usually in the range
of 10%− 15% drop to maintain higher robustness [10, 5, 8].
In this context, a clean data sample is a sample without any
perturbation.

The proposed framework, called Dual-model Bounded
Divergence (DBD), achieves a balance between clean ac-
curacy and robust accuracy by applying it to any arbitrary
robust deep neural network without prior training or param-
eter optimization. Therefore, DBD can be executed in an
unsupervised manner without requiring any prior training or
access to the data distribution.

Figure 1 illustrates the flow diagram of the proposed algo-
rithm. Firstly, DBD receives the Softmax layers of both the
robust and non-robust models as input. It is worth mention-
ing that the robust and non-robust models can have different
architectures and are not required to be the same architec-
ture. The DBD framework incorporates a gating mechanism
that can determine which model, either the robust or non-
robust, should be employed for prediction based on the DBD
Variance calculated by the gating mechanism. The DBD
Variance is a cross-model variance obtained from the Soft-
max layer outputs extracted from both models. If the DBD
Variance value surpasses a pre-determined gating thresh-
old, it suggests that the input may have been perturbed by
an adversarial attack, and the robust model is activated for
prediction. Otherwise, the non-robust model is utilized in
the prediction process. The pseudo-code of the proposed
algorithm is presented in Algorithm 1.

The gating threshold can be identified by cross-validation
or based on the user’s preference for balancing the trade-

off between the model’s accuracy on non-perturbed (clean)
samples versus perturbed ones.

2.1. DBD Variance

The core element of the proposed framework is DBD
Variance, used as a gating mechanism to perform the deci-
sion process. Here we motivate this approach and provide
detailed formulation on how to apply this technique.

2.1.1 DBD Variance as Gating Mechanism

Definition (DBD Variance): Given two models M , M ′,
each with n outputs which are independently trained on the
training set D, the variance of the model M from the model
M ′ at data input (x, y) is DBD Variance of the model for
data input (x, y).

As such the DBD Variance is measured as follows:

V ar(M |M ′)x =

n∑
i=1

pi(M̄) log2(|pi(M̄)− pi(M)|+ 1) (1)

where, pi refers to ith output of the model for data input x.
M̄ is the average probability of the model computed for data
input x from the models M and M ′ which is computed as
below:

pi(M̄) ∝ exp(log(pi(M
′)) + log(pi(M))) i ∈ {1, ..., n}

Algorithm 1: DBD Framework

Input: S=
{

x| x ∈ D
}

, Threshold t

Input: Robust model M and Non-Robust Model M
′

with c distinct classes, LM (x): Softmax layer
Result: R =

{
ŷ(x) | x ∈ D

}
R = [ ]
for x in S do
Forward Pass M(x) → LM (x)
Forward Pass M ′(x) → LM′(x)

Score = Max
(
V ar(M ′|M), V ar(M |M ′)

)
(1)

if Score > t then
R.add(M(x))
else
R.add(M ′(x))

3. Experiments
Although cross-validation is recommended for determin-

ing the optimal threshold value in DBD, using a thresh-
old value of 0.5 provides acceptable performance. Here,
we present the optimal threshold value determined through
cross-validation.
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Algorithm 2: Fast DBD Framework

Input: S=
{

x| x ∈ D
}

, Threshold t

Input: Robust model M and Non-Robust Model M
′

with c distinct classes, LM (x): Softmax layer
Result: R =

{
ŷ(x) | x ∈ D

}
R = [ ]
for x in S do
x from a new source
Forward Pass M(x) → LM (x)
if Benevolent-Flag then

Forward Pass M ′(x) → LM′(x)

Score = Max
(
V ar(M ′|M), V ar(M |M ′)

)
if Score > t then
R.add(M(x))
Benevolent-Flag=False
else
R.add(M ′(x))

else
R.add(M(x))

ImageNet [4] dataset was used for the comprehen-
sive evaluation. We also tested our DBD framework on
several different architectures, including ResNet-50 (RN-
50), WideResNet-50 (WRN-50), WideResNet-28 (WRN-
28), WideResNet-34 (WRN-34), ResNet-18 (RN-18),
WideResNet-70 (WRN-70), and PreActResNet-18 (PA-RN-
18) [6, 15, 7]. In this regard, the experimental implementa-
tion is developed based on the toolkit provided by Robust-
Bench library [3] to ensure that the results are reproducible.

The source code for all experiments can be found here.
3.1. ImageNet Dataset

Table 1 presents the results of integrating the proposed
DBD framework with defence models used in [10, 5, 13]
against APGD, targeted FAB, and AutoAttack (AA) on the
ImageNet dataset with epsilon set at 4

255 for the infinite
norm. Each row in the table indicates the performance of
the robust model with and without integration with the DBD
framework. To evaluate the impact of model selection on
the proposed algorithm’s performance, we use a ResNet-50
architecture as the non-robust model passed to the DBD
framework.

As seen, the proposed DBD framework can improve the
clean accuracy (C-Acc) by 1.2% − 6% across all models
with a minor drop in robust accuracy (R-Acc).

Table 1 shows that AutoAttack (AA) has the highest suc-
cess rate in fooling the model, resulting in the lowest robust
accuracy. The proposed DBD framework improves clean
accuracy without compromising much on robust accuracy
and achieves the highest average of both accuracies in all

Table 1: DBD performance on ImageNet. The abbreviations
stand for C-Acc: Clean Accuracy, R-Acc: Robust Accuracy,
Avg-Acc: Average Accuracy, RN-50: ResNet-50, WRN-50:
WideResNet-50 and AA: AutoAttack.

Model Attack C-Acc R-Acc Avg-Acc

Salman et al. (RN-50) [10] AA 64.02% 34.96 49.49%
Salman et al. + DBD 71.32% 34.24% 52.78%

Engstrom et al. (RN-50) [5] AA 62.56% 29.2% 45.88%
Engstrom et al. + DBD 64.88% 29.2% 47.04%

Wong et al. (RN-50) [13] AA 53.44% 25.06% 39.25%
Wong et al. + DBD 59.2% 25.04% 42.12%

Salman et al. (WRN-50)[10] AA 68.46% 38.14% 53.3%
Salman et al. + DBD 72.3% 38.04% 55.17%

Salman et al. (RN-50) [10] APGD 64.02% 34.96% 49.49%
Salman et al. + DBD 66.10% 34.42% 50.26%

Engstrom et al. (RN-50) [5] APGD 62.56% 29.32% 45.96%
Engstrom et al. + DBD 66.74% 28.98% 47.86%

Wong et al. (RN-50) [13] APGD 53.44% 25.06% 39.25%
Wong et al. + DBD 54.52% 25.10% 39.81%

Salman et al. (WRN-50)[10] APGD 68.46% 38.22% 53.34%
Salman et al. + DBD 71.12% 37.70% 54.51%

Salman et al. (RN-50) [10] FAB 64.06% 36.82% 50.44%
Salman et al. + DBD 66.10% 36.02% 51.06%

Engstrom et al. (RN-50) [5] FAB 62.52% 31.44% 46.98%
Engstrom et al. + DBD 64.88% 31.12% 48.00%

Wong et al. (RN-50) [13] FAB 53.44% 30.80% 42.12%
Wong et al. + DBD 54.52% 30.60% 42.56%

Salman et al. (WRN-50)[10] FAB 68.46% 40.68% 54.57%
Salman et al. + DBD 71.12% 39.74% 55.43%

cases for ResNet-50 (RN-50) and WideResNet-50 (WRN-
50) architectures.

3.2. Fast DBD

While in general the original version of DBD needs to
execute two network architectures to identify whether the
input data sample is perturbed or it is a clean data sample for
the gating mechanism; it is possible to reduce the computa-
tional complexity of the proposed framework significantly
in real-world applications. The pseudocode for Fast DBD is
provided in Algorithm 2. Basically in Fast DBD, we switch
to the robust model the DBD variance score for the model
exceeds the threshold. This is motivated by the fact that
well-known adversarial attacks generate the final perturba-
tion to fool the target machine learning model by querying
the model iteratively (multi-step attacks). One of the main
benefits of the proposed DBD variance is to identify whether
a sample is malicious or not. Therefore, it is possible to iden-
tify whether the query originated from a source is perturbed
in early stages of adversarial attack generation, then only the
robust model needs to be used without requiring further DBD
variance calculations for the consecutive queries originated
from the malicious source. Therefore, the DBD variance
only needs to be calculated once for all samples originated
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Table 2: Performance comparison of Fast DBD, DBD, and
Salman et al.’s (2020) robust model on the WideResNet-50
architecture, using a batch size of 128. The graph displays
average times calculated over multiple samples.

Model Attack C-Acc R-Acc Time

Salman et al. (WRN-50) [10] APGD 68.46% 38.14% 0.02501
Salman et al. + Fast DBD 71.12% 38.14% 0.02630
Salman et al. + DBD 72.3% 38.04% 0.05210

from that adversarial source reducing the computational time
substantially.

Here we demonstrate the potential of Fast DBD in improv-
ing performance using a real-world scenario. Specifically,
we consider a scenario in which two clients make queries
to the model: one client is normal, while the other client
uses APGD targeted attack with 100 steps and an epsilon
value of 4

255 . We assess the model’s performance using the
ImageNet test set and evaluate the time efficiency based on
the average running time of total queries to the network.
The average time is calculated over the entire test dataset,
encompassing both normal and adversarial queries, with the
understanding that adversarial inputs necessitate a greater
number of queries (on the order of 100) to the model. The
results, shown in Table 2, indicate that while DBD provides
the highest clean accuracy, its running time is twice as long
as Fast DBD. Moreover, we observe that Fast DBD incurs a
much smaller increase (in the magnitude of 5% on average
which is consistent with the the amortized analysis above) in
the running time of the robust model proposed by Salman et
al. [10], while still increasing the clean accuracy.

4. Conclusion
The DBD framework improves the performance of a deep

learning model on clean data samples while maintaining its
robust accuracy. The proposed DBD framework benefits
from DBD Variance as a gating mechanism to determine
if a sample is perturbed by an adversarial attack and if a
robust model is required for the prediction. The experimental
results show the efficacy of the proposed defence model,
which could improve the clean data accuracy of the model
by up to 6% with a negligible drop in robust accuracy. The
core element of the proposed framework is based on a novel
DBD Variance which can be used to determine the model’s
variance without any data leakage problem and decrease of
performance which existed in prior variance measure works.
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