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Abstract

Neural networks have been proven to be both highly ef-
fective within computer vision, and highly vulnerable to
adversarial attacks. Consequently, as the use of neural
networks increases due to their unrivaled performance, so
too does the threat posed by adversarial attacks. In this
work, we build towards addressing the challenge of ad-
versarial robustness by exploring the relationship between
the mini-batch size used during adversarial sample gen-
eration and the strength of the adversarial samples pro-
duced. We demonstrate that an increase in mini-batch size
results in a decrease in the efficacy of the samples produced,
and we draw connections between these observations and
the phenomenon of vanishing gradients. Next, we formu-
late loss functions such that adversarial sample strength
is not degraded by mini-batch size. Our findings high-
light a potential risk for underestimating the true (practical)
strength of adversarial attacks, and a risk of overestimating
a model’s robustness. We share our codes to let others repli-
cate our experiments and to facilitate further exploration of
the connections between batch size and adversarial sample
strength.

1. Introduction

Advances within neural networks have allowed them to
achieve unprecedented levels of success across a number
of computer vision tasks [12, 20]. This in turn has led to
their adoption across a wide range of applications, including
within safety-critical systems such as facial recognition [10]
and autonomous vehicles [15]. However, despite the im-
pressive performance and remarkable potential displayed by
neural networks, researchers have shown that these systems
are highly susceptible to adversarial attacks - inputs which
have been specifically modified in order to fool or mislead
their targets into making incorrect decisions [4,23]. Follow-
ing this discovery, there has been a tremendous amount of

research focused on developing methods which can be used
to effectively train and assess adversarially robust models,
leading to a number of developments on both fronts.

On the side of adversarial assessment, many advances
have come from the development of newer and stronger
attacks which represent a greater range of threat models.
Early adversarial attacks focused on performing white-box
attacks which leveraged gradient-based information in a rel-
atively straightforward manner [11], but more recent works
have led to the development of stronger white-box attacks
through iterative methods [5,17], strong and efficient black-
box attacks [1, 7], and even attacks which remain effective
when deployed in a physical setting [3, 16]. Through the
creation of additional and stronger attacks, it is now pos-
sible to test models against a larger amount of theoretical
threat models, thereby allowing for a more thorough assess-
ment of the vulnerabilities of these neural networks.

Within the realm of adversarial robustness training, there
have also been a number of significant developments. These
include the development of principled formulations for ad-
versarial training [17], methods which allow for more ef-
ficient and easier implementations of adversarial training
[21, 25], and techniques which incorporate strategies such
as smoothing in order to boost the efficacy of existing train-
ing methods [6].

However, despite the significant advances displayed in
both adversarial training and testing, gaps still remain on
both fronts. Often existing training techniques are evalu-
ated against iterative white-box attacks which make use of
the gradient, which can lead to an overestimation of model
robustness through obfuscated gradients [2, 18]. Likewise,
it is difficult to assess the strength of novel adversarial at-
tacks as this requires examining their efficacy against both
baseline and adversarially trained models. These difficul-
ties highlight the continued need to ensure not only the effi-
ciency, but also the validity of claims made with regards to
adversarial robustness.

To this end, we identify a potential obstruction on the
path to adversarial robustness - the generation of adver-



Figure 1. The image above shows the vulnerability of neural networks to adversarial attacks. Perturbing the input image by an ϵ of just
four pixel intensity levels (out of 255) within the L∞ norm, an amount practically imperceptible to humans, is enough to cause the model
to change the classification of the image from Egyptian cat to great white shark.

sarial samples within large mini-batches. In this work we
conduct experiments which demonstrate that the creation
of adversarial samples within a batched setting leads to a
degradation in the strength of the samples created. We at-
tribute this effect to the reduction of the loss over a mini-
batch to the mean loss, a process which results in vanish-
ing gradients. We show that without this reduction, the
negative effect of increased batch size is removed, and we
discuss how this information can be leveraged moving for-
ward. While our findings are relatively straightforward and
align with an intuitive understanding of the issue, we are
unaware of any previous works which explicitly address
these concerns, and we argue that it is essential to high-
light any potential mechanisms which may lead to a reduc-
tion in adversarial strength which could in turn lead to an
underdevelopment or over-assessment of model robustness.
The code used to generate the results for our project may
be found here: https://github.com/AdvCVPR23/
Adversarial-Mini-Batching.

2. Preliminaries

2.1. Cross-Entropy Loss

Cross-entropy loss is the most commonly used loss func-
tion when it comes to the supervised training of neural net-
works for classification tasks, and it plays a prominent role
within a number of white-box adversarial attacks. For our
purposes, we will consider the formulation for the cross-

entropy loss for a mini-batch to be

CE = − 1

N

N∑
i=1

cnlog(
ef(xn)cn∑C
c=1 e

f(xn)cj
) (1)

where N represents the number of samples in the mini-
batch, C represents the number of classes within the given
classification problem, cn represents the class label for a
given sample, and f(xn) represents the unnormalized logits
of a given classifier f and a sample xn (thereby making the

ef(xn)cn∑C
c=1 e

f(xn)cj
term represent the softmax score for a given

class cn ). This formulation aligns with the default formu-
lations given for cross-entropy loss within both TensorFlow
and PyTorch, and for our purposes, it is most important to
note the 1

N term which gives us the mean loss rather than
the total loss.

2.2. Fast Gradient Method

Introduced by Goodfellow et al. [11], the Fast Gradient
Method (FGM) is one of the earliest and simplest methods
that can be used to generate adversarial samples (within the
original paper [11] the attack is applied only within the L∞
norm and is called the Fast Gradient Sign Method (FGSM),
however, when applied to other norms the sign operation is
no longer used). FGM creates adversarial images in the fol-
lowing manner: first, a base image that is to be perturbed is
fed through the model that is being attacked. The model’s
outputs are then used in conjunction with a given loss func-
tion in order to calculate the model’s loss with respect to
that particular image. This loss is then back-propagated to
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the input, wherein the resultant gradients are added to the
image to create the adversarial image. In the final step of
FGM, this adversarial image is clipped such that it is within
some fixed distance ϵ of the original image (the distance
ϵ will be dependent on what norm the target is operating
within). Mathematically, this idea can be captured in the
following equations:

xadv = x+ ϵ · ∇xL(f(x), y)

||∇xL(f(x), y)||2
(2)

for the L2 norm and

xadv = x+ ϵ · Sign(∇xL(f(x), y)) (3)

for the L∞ norm respectively. Here x represents a clean
or unperturbed sample, ∇xL(f(x), y) represents the gradi-
ent of the loss with to the input x and some given set of
labels y (for our purposes, we consider cross-entropy loss
as described in equation 1), and xadv represents the newly
constructed adversarial sample.

By modern standards, FGM is considered a simple or
weak adversarial attack as it is a single-step method and
only calculates the gradients with respect to the base image
once and does not perform any randomization. However,
despite the simplicity of this method, it remains highly ef-
fective against models that are trained in a non-robust man-
ner, can be executed relatively quickly due to its single-step
nature, and has seen surprising levels of success in some
modern adversarial training regimes [25]. For these reasons
we use FGM to represent a weak attack to test the effect of
mini-batch size against.

2.3. Projected Gradient Descent

The second attack method we use within our assessment
is Projected Gradient Descent (PGD) [17, 24]. PGD oper-
ates by first injecting some level of noise into a given base
image. PGD then iteratively performs the FGM attack us-
ing this modified base image in order to produce a stronger
adversarial sample. This can be understood mathematically
as

xt+1
adv = FGM(xt

adv), x
1
adv = FGM(x+ noise) (4)

with noise representing any type of noise bounded within
the given ϵ and xt

adv representing the adversarial sample
after t iterations of the FGM attack. The iterative nature of
PGD combined with the random initialization allows for the
construction of far stronger adversarial samples than single-
step methods such as FGM, and PGD has been claimed to
be the strongest first-order attack as a result [17]. Based on
this, we use PGD to test the effect of mini-batch size on a
strong adversary.

3. Experimental Design
3.1. Experiments

Within our work we perform four sets of experiments in
order to elucidate the effect of mini-batch size within adver-
sarial sample generation.

• Baseline: Our first set of experiments involves gener-
ating samples using the loss formulation given within
equation 1. The results from these runs demonstrate
the effect of mini-batch size on adversarial strength
when using the default formulations for loss accumu-
lation over mini-batches (as reflected in the implemen-
tations for both TensorFlow and Pytorch).

• Batch Correction: The second set of experiments per-
formed removes the term 1

N from equation 1, resulting
in:

CE = −
N∑
i=1

cnlog(
ef(xn)cn∑C
c=1 e

f(xn)cj
) (5)

These results allow us to directly attribute the cause
of adversarial strength degradation to the commonly
used reduction over mini-batch size (i.e., the use of the
mean loss rather than total loss). It is worth noting that
the computational complexities of equations 1 and 5
are equivalent and thus this formulation does not incur
any additional overhead in terms of memory usage or
computation time.

• Mixed Precision: Our third set of experiments repeat
our experiments using our original loss formulation
given in equation 1 while using 16-bit floating point
precision instead of 32-bit floating point precision for
our tensors. This allows us to more concretely con-
nect the degradation in adversarial attack strength to
the phenomenon of vanishing gradients.

• Batch Corrected Mixed Precision: Our final set of
experiments focuses on performing attacks using equa-
tion 5 and 16-bit precision floats. These experiments
allow us to further confirm our understanding of the
mechanisms behind our observations

All experiments are run eight times with mini-batches of 1,
2, 4, 8, 16, 32, 64, and 128 images.

3.2. Attack Parameters

For each experiment we perform FGM and PGD within
the Euclidean (L2) and infinite (L∞) norms using the pa-
rameters given in table 1.

Performing both FGM and PGD allows us to assess the
effect of mini-batch size on weak attacks and strong attacks
respectively, and performing attacks across both the L2 and
L∞ norms allows us to assess the effect of mini-batch size
across different measures of visual distance.
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(d) DenseNet121

Figure 2. The graphs above show the detrimental effect of large mini-batch sizes when generating adversarial attacks bounded within the
Euclidean norm (L2). Lines with convex polygons represent FGM attacks, and lines with concave polygons show PGD attacks.

Attack Type Epsilon Steps Step Size
FGM L2 128/256 1 ϵ
FGM L∞ 8/256 1 ϵ
PGD L2 128/256 32 2 · ϵ/32
PGD L∞ 8/256 32 2 · ϵ/32

Table 1. Attacks with a strength of ϵ = 8/256 correspond to a
strength of 0.031 in the normalized [0, 1] space as used in works
such as [2].

3.3. Dataset and Models

In our experiments we make use of ImageNetV2 [19].
ImageNetV2 is a collection of 10,000 images consisting
of 10 sample images for each of the 1000 different classes
found within the original ImageNet [9]. While ImageNetV2
was primarily designed as an additional test set for models
trained on the original ImageNet, ImageNetV2 [19] forms
an ideal basis for testing adversarial image generation as it
properly mirrors a real-world threat model wherein attack-

ers may be able to manipulate genuine data which was not
available to the model designers during the training or test-
ing of a given model. For our experiments all images are
resized to be 224x224.

We ran all experimental setups using four separate model
architectures: InceptionV3 [22], Xception [8], ResNet50
[13], and DenseNet121 [14]. Each model was pre-trained
on ImageNet [9] and made use of the default Tensor-
Flow weights and preprocessing functions (specific to each
model).

3.4. Additional Considerations

In order to limit potential confounding factors within our
analysis, we use an Intexl Xeon Gold 6226 CPU paired with
an NVIDIA Quadro RTX 6000 GPU for all of our experi-
ments. Additionally, in order to minimize the effect of the
random initialization within PGD attacks, we repeat all runs
five times and take the average result across the runs.
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Figure 3. This figure shows the same set of results as fig. 2 but for attacks bounded within the infinite norm (L∞).

4. Evaluation and Analysis

4.1. Baseline vs. Batch Correction

The first thing which may be observed when examining
the results of our experiments is the universal degradation of
adversarial sample strength across attacks and models when
using large mini-batches in conjunction with the proposed
baseline cross-entropy loss formulation given in equation
1. While this effect is much more pronounced within at-
tacks bounded within the Euclidean norm and for the In-
ceptionV3 and Xception architectures (in contrast with the
infinite norm and the ResNet50 and DenseNet121 architec-
tures respectively), the use of larger mini-batch sizes during
the generation of adversarial samples consistently leads to
a decrease in the number of samples able to successfully
fool the given classifier. The most drastic example of this
can be seen when we look at the InceptionV3 model. When
generating adversarial samples via PGD bound within the
Euclidean norm (L2), the rate of successful attacks against
InceptionV3 drops from 94.54% when samples are gener-
ated individually, to 85.47% when samples are generated

within batches of size 128.
In contrast, when we use our formulation given within

equation 5 which calculates the total loss rather than the
mean loss, we can see that the penalty to adversarial
strength induced by larger batch sizes is alleviated. Un-
der this corrected formulation attacks are able to retain their
strength whether they are generating individual samples or
they are generating samples in large batches. These findings
align well with an intuitive view of the problem; if samples
are generated based on the mean loss rather than the to-
tal loss, the contribution of each individual sample will de-
crease as the number of samples considered increases. This
in turn will lead to gradients which are smaller in magni-
tude, and thus will incidentally result in vanishing gradients
as larger and larger batch sizes are explored.

4.2. Confirmation through Mixed Precision

These results regarding the relationship between batch
size and adversarial sample strength are further supported
when we examine our mixed precision results. As can be
observed from our findings, regardless of batch size, a de-



crease in precision leads to a drop in adversarial strength.
This is to be expected as by halving our precision, we have
a less granular view of our loss surface, and thus the de-
scent direction given by the gradient will be less exact. The
more interesting observation, however, arises when we ex-
amine our baseline mixed precision results and compare
them against our batch corrected results. If we do this, we
can obverse that while adversarial samples generated in a
mixed precision manner may result in a lower degree of
adversarial strength for small batch sizes, as batch size in-
creases, batch corrected samples generated in a mixed pre-
cision manner often reach a point where they are more ef-
fective on average than samples generated with full preci-
sion but without batch correction. This highlights the im-
portance of using the sum of the loss over the mini-batch
rather than the mean of the loss over the mini-batch when
generating adversarial samples.

4.3. Discussion

Given the relative simplicity of our results and how well
they align with what may be expected from an intuitive ex-
amination of the problem, it is worth asking whether these
results are important. To that end, we present a two-fold
argument as to the relevance of this work. The first argu-
ment comes from a desire to standardize robustness testing
and verification. While a number of previous works (such
as [2, 5]) have discussed the need to build towards a shared
set of baseline testing standards, to our knowledge our work
is the first which explicitly discusses how to formulate loss
functions such that sample strength is not degraded by mini-
batch size during testing. This allows us to take greater
advantage of parallelized environments without sacrificing
any potential adversarial strength (and as a consequence,
over estimating adversarial robustness).

Our second argument stems from a slightly less obvi-
ous use case - the generation of adversarial samples dur-
ing adversarial training. While switching from using the
mean loss over a mini-batch to using the total loss over a
mini-batch may be a relatively painless adjustment to make
during model assessment, this switch is not as straightfor-
ward during model training. Mean loss reduction allows
for a more direct comparison of models trained using dif-
ferent batch sizes, a smoother approximation of the loss
surface, and generally more convenient numerical proper-
ties. In contrast, if the reduction of adversarial samples is
done by the sum of the losses over a mini-batch, a num-
ber of hyper-parameters may need to be adjusted based on
the batch size used including step-size, momentum decay,
and more. Therefore, we can observe that even while the
challenge of correcting for the effect of large batch sizes
may be relatively easily addressed within model testing, it
is a much more complicated issue to address during model
training. Furthermore, while an incorrect formulation of the

adversarial loss may lead to an over estimation of robust-
ness if done during model testing, this same mistake may
lead to a reduction in true model robustness if made dur-
ing model training. As such, we assert that it is crucial to
explicitly establish the potential consequences of incorrect
adversarial training and assessment, and to build our train-
ing and evaluation tools such in such a way that these risks
are mitigated.

5. Conclusion
In this work we demonstrated the link between large

mini-batch sizes and the reduction of adversarial strength
within the adversarial samples created. Through testing for-
mulations which used mean loss, total loss, and mixed pre-
cision, we were able to isolate the effect of batching within
our analysis and demonstrate that while its magnitude may
change based on the model or attack used, its negative im-
pact remains present regardless. We then briefly discussed
how this may affect models during both training and assess-
ment, and we further affirm the need for standard testing
tool and parameters for evaluating model robustness.

References
[1] Maksym Andriushchenko, Francesco Croce, Nicolas Flam-

marion, and Matthias Hein. Square attack: a query-efficient
black-box adversarial attack via random search. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXIII, pages
484–501. Springer, 2020.

[2] Anish Athalye, Nicholas Carlini, and David Wagner. Obfus-
cated gradients give a false sense of security: Circumventing
defenses to adversarial examples. In International Confer-
ence on Machine Learning, pages 274–283. PMLR, 2018. 1,
4, 6

[3] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin
Kwok. Synthesizing robust adversarial examples. In Inter-
national Conference on Machine Learning, pages 284–293.
PMLR, 2018. 1

[4] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nel-
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d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. 1

[22] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception archi-
tecture for computer vision. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
2818–2826, 2016. 4

[23] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. In-
triguing properties of neural networks. In 2nd International
Conference on Learning Representations, ICLR 2014, 2014.
1

[24] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom,
Alexander Turner, and Aleksander Madry. Robustness may
be at odds with accuracy. In International Conference on
Learning Representations, 2018. 3

[25] Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better
than free: Revisiting adversarial training. In International
Conference on Learning Representations, 2019. 1, 3


	. Introduction
	. Preliminaries
	. Cross-Entropy Loss
	. Fast Gradient Method
	. Projected Gradient Descent

	. Experimental Design
	. Experiments
	. Attack Parameters
	. Dataset and Models
	. Additional Considerations

	. Evaluation and Analysis
	. Baseline vs. Batch Correction
	. Confirmation through Mixed Precision
	. Discussion

	. Conclusion

