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Abstract

Deep neural network-based computer vision systems
have become indispensable modules in modern days. Its
rising popularity has caught the attention of fooling such
networks. Recent works in this field have well-demonstrated
the threat of adversarial attacks to real-world computer vi-
sion systems. While the majority of adversarial attacks are
effective in the digital world, the adversarial patch attack
is robust to be deployed in the physical world. Interest-
ingly, existing literature on adversarial defense is heavily
biased towards minute adversarial attacks, and little atten-
tion has been given to physical attack detection. To over-
come this limitation, in this research, we have developed
a novel adversarial patch attack dataset to benchmark the
defense study in this critical direction. Using the collected
dataset, we have conducted several experiments both under
seen and unseen patch settings. On top of that, the general-
ization experimental setting, i.e., unseen dataset evaluation,
shows that adversarial patch attacks are hard to defend. We
assert that such a study along with the dataset and complex-
ity in defending the patch attacks can inspire future defense
works to add these attacks as well.

1. Introduction

The adversarial vulnerability of deep neural networks
(DNNSs) has received a lot of attention. The adversarial at-
tacks can be broadly divided into three broad categories: (i)
minute adversarial perturbations [12,20], (ii) universal per-
turbations [ 16], and (iii) physical adversarial patches [8,14].
While novel adversarial attacks ensure that the DNNs are
secure from any possible vulnerability, the defense algo-
rithms tackling them independently might be a severe con-
cern [1,6,7]. It is seen that the transferability and applica-
bility of minute and universal adversarial perturbations are
limited in the physical world compared to adversarial patch
attacks. Still, the majority of the adversarial defense algo-
rithms target minute adversarial perturbation; whereas, little

Figure 1. Distribution shift among different adversarial attacks.
The first row is minute adversarial perturbation noise, the second
is the universal perturbation vectors, and the third is the physical
adversarial attacks.

work tackles universal adversarial perturbations and phys-
ical patch attacks. Figure 1 shows the adversarial noises
formed under three broad categories mentioned above. The
minute and universal perturbations do not occlude any re-
gion of the images; however, the adversarial patches can
occlude a small or significant portion of an image, depend-
ing on its size. These drastic natures in not only crafting but
also applying an adversarial perturbation lead to a signifi-
cant distribution shift among the adversarial images. There-
fore, existing defenses tackling minute perturbations are not
effective for physical patch detection. Hence, we assert that
ignoring the impact of adversarial patch attacks can be dan-
gerous, especially when aiming to deploy these state-of-the-
art DNNS in the unconstrained physical world. Further, we
want to mention that while several benchmark studies are
also proposed in the literature to tackle the issue of adversar-
ial defense, no work has included adversarial patch attacks.
For example, Hendrycks and Dietterich [13] showcase the
impact of several common corruptions, such as Gaussian
noise, blur, and fog on DNNSs, but no defense has been pro-



posed in this study. Dong et al. [| 1] proposed a benchmark
study to tackle only the minute adversarial perturbations.
Several benchmark studies recently proposed to increase the
defense umbrella by combing adversarial perturbations and
common corruptions [2,4]. Several defense works also ex-
ist that can effectively detect adversarial attacks in several
generalized settings such as unseen datasets, unseen pertur-
bation, and unseen threat model [1, 5, 6]. As discussed, no
studies have benchmarked the defense against adversarial
patch attacks; therefore, in this research, after creating patch
attack datasets, we have performed the defense study using
several deep image classification networks, including the
network architecture search (NAS) method [22]. The prime
reason for conducting a benchmark study on adversarial
patches can also be understood from the distribution shift
among the attacks and out-of-distribution handling limita-
tions of the DNNs. We assert that the presence of the dataset
and benchmark evaluation can help advance the research in
this direction and make comparisons with new novel algo-
rithms. In brief, the contributions of this research are:

* A novel adversarial patch attack dataset has been de-
veloped. The dataset contains images of multiple vari-
ations of patches. The presence of different style
patches will ensure that the defense algorithms are not
biased;

¢ A benchmark evaluation has also been conducted. For
that, several real-world evaluations and protocols are
developed to handle seen patches, unseen patches, and
unseen datasets. A defined protocol can help make fair
comparisons in future works, which is often missing in
minute adversarial detection literature.

2. Adversarial Patched Dataset

Considering the lack of research in the field of detection
of adversarial patch attacks. In this research, we have devel-
oped two unique adversarial patch datasets utilizing the im-
ages from the validation sets of ImageNet [10] and COCO
[15] datasets. We have randomly selected 2000 images from
each dataset and treated them as a real subset of the pro-
posed dataset. On this real subset, we have applied differ-
ent adversarial patches having significantly different styles
from each other. To perform the adversarial patch attack,
we have used the patches from ImageNet-Patch [17]. These
adversarial patches are effective in the real world compared
to the minute (additive) adversarial perturbations due to the
transformation applied while learning the patches. These
are targeted patches, each having a different target class;
hence these patches not only have variations in texture and
style but can also misclassify the images into different cat-
egories such as soap dispenser, cornet, plate, banana, cup,

Figure 2. Samples of the different adversarial style patches used
in preparing the dataset. It can be seen that these patches can be
blended with the image content and hence increase the complexity
of its detection, especially when the detection network has not seen
them in the training.

typewriter, electric guitar, hair spray, sock, a cellular tele-
phone. Using these 10 patches, we have generated a large-
scale adversarial patch dataset containing 20, 000 patched
images of the validation set of the ImageNet dataset. We did
the same with randomly selected 2000 images of the valida-
tion set of the COCO dataset, giving us 20000 more patched
images. However, the images of COCO datasets are only
used for evaluation to ensure the detection algorithms’ un-
seen dataset generalizability. In total, the proposed dataset
contains 40,000 adversarial patch images and 4,000 real
images. Figure 2 shows some of the samples from the pro-
posed dataset reflecting the challenge in detecting the ad-
versarial attack not only due to significant style change of
the patches but also their blending nature with the complex
image regions.

3. Benchmarking Adversarial Patch Detection
Results and Analysis

Architecture: As mentioned, this research aims to over-
come the limitation of the existing adversarial defense lit-
erature and benchmark the robustness evaluation of state-
of-the-art (SOTA) image classifiers. Henceforth, we have
used several CNN architectures to extensively study the ro-
bustness of classifiers and avoid any classifier bias to per-
form adversarial patch detection. The used architectures
varied in terms of the number of layers, the connection be-
tween layers, and their formation and are as follows: Xcep-
tionNet [9], MobileNetv2 [18], NASMobileNet [22], and
VGG16 [19]. These networks are finetuned by adding a
few dense layers to extract the image features along with
the classification layer. The reason for using these archi-



Table 1. Adversarial patch detection accuracy of the different architectures on ImageNet subset. The results are reported in terms of mean
and standard deviation (SD), where the trained on one patch is tested on all the patches.

‘ Models ‘ Metric ‘ Patch 0 ‘ Patch 1 ‘ Patch 2 ‘ Patch 3 ‘ Patch 4 ‘ Patch 5 ‘ Patch 6 ‘ Patch 7 ‘ Patch 8 ‘ Patch 9 ‘
Xception Mean 81.51 75.23 82.39 76.43 84.13 70.90 72.99 78.54 81.85 78.34
SD 07.80 07.72 06.82 09.68 05.89 10.20 09.72 09.30 08.57 10.24
VGG16 Mean 80.36 71.87 80.52 80.57 73.20 67.41 69.53 72.33 76.96 79.73
SD 12.63 16.95 16.33 20.28 10.12 17.28 18.43 19.54 18.75 14.47
MobileNet Mean 67.24 70.86 68.18 66.04 75.40 65.45 67.71 71.97 80.57 74.46
SD 14.10 14.15 13.95 14.98 11.04 17.80 16.42 16.00 16.35 14.76
NASMobileNet Mean 71.10 70.00 72.60 69.00 72.00 68.10 68.40 71.80 71.90 71.50
SD 02.47 02.31 02.12 02.40 02.62 02.96 03.10 03.49 03.25 04.65

Table 2. Adversarial patch detection accuracy of the different architectures on COCO subset. The results are reported in terms of mean and
standard deviation (SD), where the trained on one patch is tested on all the patches. In contrast to the COCO results, here, the results are

generated using the detection models trained on the ImageNet subset and tested on the COCO subset.

| Models | Metric | Patch 0 [ Patch 1 | Patch 2 | Patch 3 [ Patch 4 | Patch 5 [ Patch 6 | Patch 7 | Patch 8 [ Patch 9 |
Xception Mean 74.90 68.59 75.75 69.80 77.49 64.28 66.36 71.91 75.25 71.73
SD 09.94 05.77 08.37 09.50 08.19 07.66 07.20 10.30 10.77 11.36
VGGI16 Mean 78.84 70.36 79.00 79.05 71.70 65.89 68.02 70.82 75.43 78.21
SD 12.89 16.19 16.43 20.05 10.06 16.53 17.62 19.61 18.97 14.27
MobileNet Mean 66.63 70.21 67.56 65.41 74.79 64.83 67.09 71.36 79.93 73.82
SD 14.21 13.85 14.07 15.08 11.11 17.58 16.20 16.03 16.41 14.74
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dataset settings to effectively evaluate the performance and
robustness of the image classifiers for adversarial patch de-
tection. This setting reflects the real-world nature, as in
the real world, novel attack patches or out-of-distribution
datasets can occur, which can easily break the developed
adversarial defense. Due to the space limitation, we have
reported the results in terms of the average classification
performance of each network along with the standard de-
viation (SD) observed in their detection performance. Ta-
ble 1 shows the average performance of different image
classifiers when trained and tested on the same and dif-
ferent patches. Whereas Table 2 shows the ‘dual genera-
bility’ of the classifiers, i.e., in this setting, the classifiers
are trained on ImageNet and tested on the COCO subset.
Deep networks for image classification are found vulnerable
against out-of-distribution samples [21]. The same can be
seen where the patch detection performance is significantly
low when tested on an unseen dataset compared to the seen
dataset. Regarding image classifiers, VGG is found to be the
most effective, whereas, MobileNet is found least effective in

Classification Models

Figure 3. Average adversarial patch attack detection performance
on the ImageNet subset under seen and unseen patches evaluation
setting. The results reflect that when unseen patches come for clas-
sification, the performance of the networks drops drastically.

detecting adversarial patches under unseen patch detection
settings.

Figure 3 shows the robustness of each classifier when
trained and tested on seen and unseen attack patches. It is
clear that when the networks try to classify the adversar-
ial patches not seen during training, they suffer significant
drops in performance. The prime reasons as mentioned are,
that the style texture distribution shift across patches and
their blended nature with the complex image regions. Inter-
estingly, NASMobilenet shows the highest level of gener-
alizability; however, the network’s capacity is found least.
The network’s capacity is defined as its performance in seen
patches training testing conditions. For example, the perfor-



mance of NASMobileNet is 3% lower in the unseen patches
setting than seen patches setting; however, its performance
is at least 17.4% lower than other architectures in seen eval-
uation setting. However, the architecture shows the pos-
sibility of developing a robust adversarial patch detection
classifier when intelligent adversarial patch information can
be incorporated while crafting the architecture search.

4. Conclusion

Adversarial vulnerability of ‘any’ and ‘every’ style of
convolutional neural networks, including vision transform-
ers [3] raises a severe concern about their deployment in
the real world. One complex adversarial attack is known as
an adversarial patch attack; can be deployed in the physi-
cal world; however, the defense against this attack has yet
to receive attention. To make an impact in this direction
and advance the research in handling this real-world attack,
we have developed a large-scale dataset containing 44, 000
real and adversarial patched images. We have utilized these
images to perform an extensive adversarial patch detection
benchmark study using several SOTA deep image classi-
fiers. The experimental analysis reveals that detecting ad-
versarial patch attacks is challenging due to their varying
texture style, especially when the patches are not known at
the time of training a detection network or coming from out-
of-distribution images. In the future, we aim to extend the
dataset further and build a unified and robust patch attack
detection architecture.
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