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Abstract

Neural networks have a number of shortcomings.
Amongst the severest ones is the sensitivity to distribution
shifts which allows models to be easily fooled into wrong
predictions by small perturbations to inputs that are often
imperceivable to humans and do not have to carry seman-
tic meaning. Adversarial training poses a partial solution
to address this issue by training models on worst-case per-
turbations. Yet, recent work has also pointed out that the
reasoning in neural networks is different from humans. Hu-
mans identify objects by shape, while neural nets mainly
employ texture cues. Exemplarily, a model trained on pho-
tographs will likely fail to generalize to datasets containing
sketches. Interestingly, it was also shown that adversarial
training seems to favorably increase the shift toward shape
bias. In this work, we revisit this observation and provide
an extensive analysis of this effect on various architectures,
the common ℓ2- and ℓ∞-training, and Transformer-based
models. Further, we provide a possible explanation for this
phenomenon from a frequency perspective.

1. Introduction

ImageNet [1] trained convolutional neural networks
(CNNs) have been shown to predominantly classify images
by the observed texture, whereas, humans rather tend to
consider global object shapes as the predominant cues [2].
In this context, Geirhos et al. provided an initial analysis of
robust models and provided initial evidence, that the initial
texture bias in CNNs is shifted towards shape-based deci-
sions under adversarial training (AT) [3]. However, the au-
thors have limited their analysis to a ResNet-50 trained on
ImageNet using AT against an ℓ2-bound adversary. To allow
for a more conclusive evaluation, we expand their analysis
to the more common ℓ∞-setting for AT and analyze addi-
tional CNNs like ResNet-18 and Wide-ResNet-50-2, as well
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as Transformers (XCiT-S/M/L12), which are known to be-
have differently from CNNs regarding their inductive bias.
In our study, we evaluate models trained on clean data as
well as under AT with different norms and budgets with re-
spect to their generalization ability to out-of-domain (OOD)
data [3, 4], with special emphasis on the shape-texture cue-
conflict, that has been used as a measure of the misalign-
ment between human and neural network based image clas-
sification. In this context, we provide an extensive evalu-
ation and discussion of the different behavior of CNN and
Transformer models.

Further, we analyze the generalization ability of
adversarially-trained networks from a frequency perspec-
tive. Specifically, we investigate the frequency spectra of
different OOD image categories and provide possible expla-
nations for the following two questions: (i) Why does ad-
versarial training lead to an accuracy decay on some OOD
datasets? and (ii) Why is the cue-conflict between shape
and texture affected by AT?

We summarize our key findings as follows:

• Training against ℓ∞-bound adversaries generally re-
sults in similar trends regarding human-like behavior
with respect to the shape-texture bias as ℓ2-bound ad-
versarial training. However, ℓ∞-robust models per-
form better on high-frequency, and worse on low-
frequency data.

• Observations made by prior work on ℓ2-bound ResNet-
50 scale to other CNNs and Transformers relative to
parameter sizes.

• Although Transformers also experience a drop in OOD
performance after adversarial training, they perform
better in OOD generalization and are more human-
like than robust CNNs, and even outperform humans
on many benchmarks.

• From the analysis of the images frequency spectra,
we provide a possible explanation of why adversarial
training can lead to a decay of model accuracy on OOD
data.



• We also provide a possible explanation of why adver-
sarial training reduces texture bias and increases shape
bias.

2. Related Work
This work focuses on the intersection between adversar-

ial robustness and “human-like” behavior which we briefly
sketch in this section.

Adversarial robustness. Neural networks have a ten-
dency to overfit the training data distribution, which makes
them fail to generalize beyond it. As a result, their pre-
dictions are often highly sensitive to small changes in in-
put [5,6], even if those changes are imperceptible and mean-
ingless to humans. This phenomenon can be formally de-
scribed as an adversarial attack, where the goal is to find
an additive perturbation to the input sample that maximizes
the loss function [7–10]. To constraint attacks, perturba-
tions are only sought within a specified radius ϵ (budget) of
the original input. The radius is typically bounded by the ℓ2
or ℓ∞-norm.

Adversarial attacks can be found in both white-box
[8–10] and black-box [11–14] settings, with gradient-based
attacks being particularly effective. Models that are not
trained with adversarial defenses are typically only robust to
low budgets attacks, if at all. Adversarial training (AT) [8]
is a solution to this problem, as it trains the model on worst-
case perturbations found during training, effectively making
out-of-domain attacks become in-domain samples. How-
ever, this approach can result in overfitting to attacks used
during training. Early stopping [15] and the addition of ex-
ternal (synthetic) data [16–18] have been proposed as effec-
tive solutions to address this problem.

However, adversarial robustness does not necessarily
correlate with improved generalization and can even hurt
it [19]. Supposedly again due to overfitting of training data,
e.g. models can still be susceptible to adverse weather con-
ditions, image artifacts due to image compression, changes
in lighting, etc. [20, 21].

Measuring “human-like” behavior. Geirhos et al. pro-
pose to measure “human-like” reasoning via out-of-
distribution (OOD) generalization to datasets and consis-
tency in predictions with humans [3].

Regarding OOD, they propose to benchmark against a
set of 12 ImageNet modification datasets [22] at various in-
tensities/conditions. At first glance, this may sound famil-
iar to ImageNet-C [20], but benchmarks a different set of
modifications: (the absence of) colour, contrast (changes),
eidolon I/II/III, false-colour, high/low-pass (frequency fil-
tering), phase-scrambling, power-equalisation, rotation,
uniform-noise. Additionally, they propose to benchmark

colour (B&W) contrast eidolon I eidolon II eidolon III

false-colour high-pass low-pass phase-scrambling power-equalisation

rotation uniform-noise

edge silhouette sketch stylized cue-conflict (dog)

Figure 1. OOD examples from [2–4, 22] for the ImageNet class
“elephant”.

against a set of five OOD datasets aiming to identify
the shape-texture-bias [2]: stylized, edge, silhouette, tex-
ture/shape cue-conflict, and sketch (the latter provided by
[4]). All datasets contain samples that belong to 16 Im-
ageNet classes and are therefore classifiable by ImageNet
models. For all datasets, the authors include a baseline ob-
tained in lab settings over 4-10 human annotators. The cue-
conflict dataset is of particular interest, as neural networks
are not only prone to overfit but - at least in the vision do-
main - they also tend to compute predictions based on de-
tails such as the texture of images rather than shapes, which
does not align with human vision [2]. For example, an im-
age of an elephant with an overlaid lion texture will most
likely result in a prediction as “lion”, while most humans
would predict “elephant” as the true label when given the
choice between both. It is worth noting that the authors also
mention that ImageNet can be largely accurately classified
solely based on texture. As such, ImageNet performance is
insufficient as an indicator of “human-like” decision mak-
ing, and Geirhos et al. propose to additionally report the
cue-conflict score to quantify this phenomenon. Examples
of all datasets are shown in Fig. 1.

As an additional metric to accuracy, [23] propose to eval-
uate the agreement in predictions. In particular, they ana-
lyze false predictions (error consistency) as well as the in-
tersection rate of predictions where both humans and mod-
els have made a correct prediction (observed consistency).

The authors maintain a leaderboard of the most “human-
like” models, which is currently dominated by Transformers
such as ViT [24, 25] and CLIP [26], or large convolutional
neural networks [27, 28] - all being pre-trained on massive
datasets.



freq.

Figure 2. Visualization of how we obtain the spectrum plots. Each
frequency measurement in the spectrum plot corresponds to the
integral over the FFT power spectrum (frequency increases from
the center to outer edges) up to that particular frequency.

3. Method
To study the likeliness to human-like behavior of

adversarially-trained models in greater detail, we use
publicly available checkpoints and perform an anal-
ysis according to the setting proposed in [3]. We
analyze pre-trained ResNet-18, ResNet-50, WideResNet-
50-2 models trained against ℓ∞-bound adversaries
with ϵ ∈ {0.5/255, 1/255, 2/255, 4/255, 8/255},
and against ℓ2-bound adversaries with ϵ ∈
{0.01, 0.03, 0.05, 0.1, 0.25, 0.5, 1, 3, 5}, and clean base-
lines (all provided by [29]). Further, we analyze XCiT-
S/M/L12 Transformer models trained against ℓ∞-bound
adversaries with ϵ = 4/255 provided by [30] and a clean
XCiT-S1 baseline provided by [31]. Lastly, to better under-
stand the differences between CNNs and Transformers, we
also analyze a clean ConvMixer-768-32 [32] checkpoint,
again obtained from [31]. All models were trained on
ImageNet [1] without any additional pre-training.

For all models, we measure the accuracy of all datasets
by reporting the mean overall conditions in the dataset
where average human performance was above 20% accu-
racy. Lastly, we determine the observed and error consis-
tency against human annotators again as a mean over all
datasets and conditions. As there are multiple annotators
per dataset, we calculate consistencies against each annota-
tor and report the mean.

We first provide a more extensive evaluation of models
that have been trained using ℓ2-AT. Then, we provide in-
sights on how models trained with ℓ2-AT behave compared
to models that are trained using ℓ∞-AT. Comparing these
two training types is not straightforward, due to the different
types of perturbations they cause. As the ℓ2-norm penalizes
the euclidean distance, perturbations can locally be more
severe than under ℓ∞. Yet, if the perturbation magnitude
increases the area of perturbations has to decrease under ℓ2-
norm, while attacks under the ℓ∞-norm can add perturba-

1Clean pre-trained XCiT-M/L12 with the same configuration were not
available.

Table 1. Our chosen ϵ budgets for comparisons between ℓ2- and
ℓ∞-bound training.

ℓ2 0.1 1 3 5

ℓ∞ 0.5/255 1/255 4/255 8/255

0 5
45

50

55

60

65

70

75

Ac
cu

ra
cy

 - 
L2

clean

0 5

20

25

30

35

40

45

cue-conflict

0 5
46

48

50

52

54

56

OOD mean

0 5

63

64

65

66

67

obs.-cons.

0 5

18

20

22

24

error-cons.

0.01 0.02 0.03

50

60

70

Ac
cu

ra
cy

 - 
Li

nf

0.01 0.02 0.03

30

35

40

45

0.01 0.02 0.03
44

46

48

50

52

54

56

0.01 0.02 0.03

62

63

64

65

66

67

68

0.01 0.02 0.03

21

22

23

24

25

Model: ResNet-18 ResNet-50 WideResNet-50-2

Figure 3. Performance of ℓ2 vs. ℓ∞-AT-trained ResNet-18,
ResNet-50, WideResNet-50-2 on clean data, texture/shape bias
cue-conflict datasets, the average mean of all OOD datasets, and
observed/error consistency compared to humans under increased
training attack budget ϵ.

tions to the entire image without constraints except for the
magnitude. Thus, there are multiple options for choosing
comparable budgets between the two norms. We choose a
straightforward way and select budgets for both norms that
approximately result in the same clean accuracy shown in
Tab. 1. As we have more checkpoints for ℓ2-AT training,
we only use a subset of those in the following analysis.

Next, we compare the behavior of CNN and Transformer
models under these training settings. Based on these ex-
periments, we then discuss whether AT is an effective tool
to induce a more human-like behavior in trained models.
Finally, we impose a frequency perspective on OOD per-
formance and shape bias under AT. To back this analysis,
we plot the frequency distribution for each OOD dataset,
and clean ImageNet validation samples belonging to the
same classes. Then we compare each OOD distribution to
the clean distribution to understand where shifts in the fre-
quency distribution are located. We obtain the frequency
distribution plots as introduced in [33]: we compute the log-
scaled FFT power spectrum and compute the radial integral
under increasing frequency resulting in a frequency power
distribution (Fig. 2). For comparability, we scale the result-
ing distributions by their integral.

4. Results
Width and depth of ℓ2 CNNs. First, we want to evalu-
ate the effect of ℓ2-training on CNN architectures: Wide-
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Figure 4. Comparison of performance on OOD datasets between robust WideResNet-50-2 trained against ℓ2- (upper ϵ values) and ℓ∞-
bound (lower ϵ values) adversaries under increasing training budget ϵ. ϵ are selected in a way that clean accuracy approximately matches
between the norms.

ResNet-50-2, ResNet-50 and ResNet-18 (Fig. 3, top row),
which allows investigating the effect of ℓ2-AT depending
on model depth and width.

We observe that increasing both, width and depth im-
proves clean performance, and performance on all OOD
datasets, as well as the observed and error consistency. As
such, Wide-ResNet-50-2 performed best on clean perfor-
mance, OOD mean, and observed/error consistency. It is
also worth noting, that switching from ResNet-50 to Wide-
ResNet-50-2 has a smaller impact on performance than
switching from ResNet-18 to ResNet-50. Also, we observe
that in some cases ResNet-18 shows opposite trends with
respect to training budget than 50-layer deep ResNets, e.g.
for power-equalisation. Still, ResNet-18 performs best on
the edge dataset for large training budgets (not shown due
to space limitations). Overall, this suggests, that increasing
parameterization of ℓ2-bound adversarially-trained models
correlates with an increase in human-like behavior.

ℓ2- vs. ℓ∞-bound Adversarial Training. Next, we com-
pare how ℓ2-AT relates to ℓ∞-AT with respect to human-like
reasoning. Exemplarily, we analyze the trend under compa-
rable budgets of a WideResNet-50-2 (Fig. 4). We observe
that on some datasets there is barely any perceivable differ-
ence as the budget increases (colour, contrast, false-colour,
uniform-noise, rotation, cue-conflict), but there are cases
where one norm or the other clearly performs better. ℓ∞-
robust models seem to be more robust against high-pass,
phase-scrambling, and power-equalisation. On the other
hand, ℓ2-robust models appear to perform better on low-
pass, and eidelonII/III. Lastly, there are also some incon-
clusive settings where one or the other performs better de-
pending on the budget (silhouette, eidolon I, stylized). Be-
sides cue-conflict, none of the OOD categories clearly bene-

Table 2. Comparison between parameters of analyzed models.

Model Inductive Bias Parameters

ResNet-18 CNN 10.4 M
ResNet-50 CNN 25.6 M
WideResNet-50-2 CNN 68.9 M

ConvMixer-768-32 Hybrid 21.2 M

XCiT-S12 Transformer 26.3 M
XCiT-M12 Transformer 46.4 M
XCiT-L12 Transformer 103.8 M

fit from AT for WideResNet-50-2. These observations only
partly transfer to other CNN architectures in Tab. 3. In gen-
eral, Fig. 3 (bottom) shows a similar trend for ℓ2 and ℓ∞-AT,
and all results support the finding that the cue-conflict score
increases consistently under both types of AT, i.e. the behav-
ior becomes more human-like towards shape bias in both
cases. Therefore, we conclude that the more commonly
used ℓ∞-AT is equally effective in inducing human-like be-
havior in CNNs, with respect to cue-conflict, and consis-
tency.

CNNs vs. Transformers. Finally, we expand our analy-
sis to Transformer architectures (XCiT) for which we only
report clean and ℓ∞-training performance. On clean train-
ing, even the smallest Transformer (XCiT-S12) which has
a comparable number of parameters to ResNet-50 (Tab. 2),
performs significantly better than the largest CNN. Contrary
to CNNs it is also able to surpass human performance on
eidolon II/III, high-pass (with an impressive improvement
of approx. 35% above CNNs), phase-scrambling, power-
equalisation, uniform-noise, and stylized. Under AT, we
largely see the same shift as with CNNs with one excep-
tion: while AT improves stylized performance of CNNs, it



Table 3. Results in [%] of generalization performance and consistency with human predictions/errors. For robust models we only report
ℓ2, ϵ = 3 (ℓ2) and ℓ∞, ϵ = 4/255 (ℓ∞) for brevity. Models without adversarial training are highlighted in gray. Bold values indicate the
best performance amongst all models.

Out-of-distribution Performance Consistency
Model Clean colour contrast eidolon eidolon eidolon false high low phase power rotat. uniform edge silh. sketch styliz. cue Mean correct error

I II III colour pass pass scr. equal. noise conflict

R18 69.79 95.47 71.88 47.50 51.88 49.38 93.39 32.66 37.73 48.21 61.25 68.36 34.22 18.12 41.88 59.00 36.00 19.61 51.00 63.90 18.60
R18 (ℓ2) 53.12 86.25 27.50 60.25 49.53 51.46 85.27 24.14 35.39 47.50 51.96 55.23 20.78 27.50 61.25 51.12 39.50 44.30 47.60 63.70 22.80
R18 (ℓ∞) 52.49 84.69 23.62 61.12 50.94 51.67 83.57 25.86 35.55 47.05 56.07 55.23 18.83 26.88 56.88 50.88 40.62 42.27 47.50 63.30 22.60

R50 75.80 97.19 83.62 49.12 52.66 51.04 95.62 33.67 38.98 49.11 70.71 73.91 37.97 23.75 48.12 61.25 34.38 17.42 54.50 65.40 17.90
R50 (ℓ2) 62.83 92.81 32.12 66.12 56.41 62.71 90.71 26.17 40.31 53.84 63.57 63.75 26.09 25.62 60.62 59.38 41.75 43.98 53.00 66.30 23.90
R50 (ℓ∞) 63.86 91.25 29.25 64.25 54.37 57.50 91.07 30.70 38.52 53.39 68.04 64.06 26.25 25.62 58.75 60.50 43.25 43.05 53.10 66.70 24.70

WRN50-2 76.97 98.28 82.38 51.00 54.69 54.17 97.23 34.92 40.62 50.98 75.18 75.39 42.27 28.75 56.88 64.12 36.50 18.28 57.30 67.20 19.20
WRN50-2 (ℓ2) 66.90 94.69 35.62 67.25 60.00 63.96 93.39 28.36 41.02 53.21 66.96 65.23 28.28 28.12 60.00 60.00 42.88 43.28 54.80 67.30 24.30
WRN50-2 (ℓ∞) 68.41 95.00 33.12 65.75 56.09 59.17 94.73 30.94 38.12 54.73 73.39 65.47 25.86 30.63 63.75 61.88 46.62 44.92 55.40 67.70 24.00

ConvMixer-768-32 80.16 99.22 98.00 50.62 56.72 56.25 98.04 39.77 43.91 56.43 86.25 80.23 56.02 26.88 64.38 70.75 44.50 22.73 63.30 69.50 19.50

XCiT-S12 81.97 98.91 98.88 55.12 59.38 64.17 98.75 69.84 46.72 62.14 91.07 81.41 55.62 37.50 61.88 71.12 57.75 25.55 68.90 70.90 19.50
XCiT-S12 (ℓ∞) 72.34 96.88 47.62 66.50 58.91 61.04 96.88 36.95 39.77 56.61 82.14 70.70 40.47 31.87 63.75 70.75 48.75 46.80 60.60 70.00 24.10
XCiT-M12 (ℓ∞) 74.04 97.34 48.25 66.88 60.16 62.29 96.96 36.80 39.06 57.59 81.43 70.86 41.17 26.25 66.88 71.00 52.62 47.27 60.90 70.40 24.80
XCiT-L12 (ℓ∞) 73.76 98.12 47.38 69.38 60.62 64.58 98.66 41.95 41.72 58.21 84.11 70.62 42.27 35.62 69.38 74.00 54.12 48.83 63.40 71.10 22.70

Humans - 88.67 66.09 60.75 58.28 63.91 88.82 46.43 56.09 55.11 75.89 84.51 55.37 87.12 75.31 91.62 47.12 77.55 - - -

decreased it on Transformers. Still, Transformers achieve
higher accuracies than humans in this category. Of all stud-
ied models, the adversarially-trained XCiT-L12 performs
best on eidolon I-III, silhouette, sketch, and cue-conflict.
However, it is also worth noting that it contains 50% more
parameters compared to the largest CNN we analyze. In
general, we can not conclude that more parameters are al-
ways better as we e.g. see some reduction in error con-
sistency from robust XCiT-S/M12 to XCiT-L12. Further,
the clean ConvMixer which contains no self-attention but
patch-embeddings, shows also an increased cue-conflict.
Generally, there is a trade-off between CNNs and Trans-
formers in almost all studied datasets. We hypothesize that
patch-embeddings may naturally be slightly shifted toward
shape bias compared to CNNs.

Is adversarial training a good option to achieve human-
like reasoning? While AT does improve cue-conflict sig-
nificantly and shifts the internal decision process toward
human-like shape bias behavior, it also decreases OOD per-
formance across many datasets. Most notably, AT causes a
significant drop in robustness to changes in contrast, rota-
tion, and uniform noise compared to clean training. Inter-
estingly, it also always reduces high-pass performance. In
the case of XCiT-models this performance is slightly worse
than for humans after AT, although the clean model signifi-
cantly outperformed humans (by approx. 23%). We see the
largest OOD drops in XCiT, while the ResNets show only
minor impairments. Based on these findings, AT alone is
not sufficient to shift models toward human-like reasoning
in all aspects. In the next section, we investigate the fre-
quency spectra of OOD samples and show that they provide
an indication of whether AT can, in principle, help to in-
crease performance.

5. A Frequency Perspective on Adversarial
Training and Out-Of Distribution Data

In Fig. 5, we plot for all considered OOD image cat-
egories their frequency power spectra, radially integrated
as described in Fig. 2, and compare the frequency spectra
to the spectrum of the clean training images. From this
comparison, it is apparent that some OOD categories de-
viate heavily from the natural image distribution in terms
of their spectra. This is obviously true for high-pass and
low-pass images as well as for uniform-noise and edge,
where the differences are particularly strong in the high-
frequency regime, but it is also visible for contrast, rotation,
and power equalization, or phase scrambling, with signifi-
cant differences in the lowest frequencies. Although adver-
sarial attacks might slightly alter the frequency spectrum of
attacked images, they are ϵ bounded and will therefore not
significantly change the frequency distribution over all sam-
ples. Thus, it would be natural that AT (i.e. adding more
training samples with a spectral distribution similar to the
one of clean images) would harm the transferability of mod-
els to such out-of-domain categories. In fact, Tab. 3 shows
exactly this trend: both types of AT cause a consistent de-
cay in classification accuracy for the OOD categories high-
pass, low-pass, uniform-noise, contrast, rotation and power
equalization. When the differences are in the low-frequency
regime as for contrast, the decay seems to be particularly
strong. This observation supports the findings by [19] that
AT can harm robustness to other corruption types and pro-
vides an initial explanation: Adding more training samples
from the original spectral distribution can harm the general-
ization to other diverging spectral distributions.

Fig. 5 also shows that some OOD categories have power
spectra that are quite similar to the spectra of the original
data (and thus of adversarial examples). For these cate-
gories, e.g. eidolon I, eidolon II, eidolon II, false colour or
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Figure 5. Frequency distribution of the utilized OOD datasets in comparison to comparable ImageNet validation samples (clean). Distri-
butions are normalized by their integral. Frequency increases along the X-axis.

cue-conflict, AT does not lead to a decay in accuracy but
can even lead to improvement in some cases. In the follow-
ing, we will discuss in which cases we might expect this
improvement.

From the above observation, we see that the OOD data
should share some important properties with the clean data
to benefit from AT, i.e. the frequency distribution should
not differ too much. At the same time, it has been argued
that convolutional neural networks tend to decide based on
texture information [2], which is local and rather mid to
high-frequency. Thus, adversarial examples can attack such
models by slightly altering the image in these frequency
bands. While this may vary by dataset [34–36], at least
some high-frequency is always present as e.g. adversarial
attacks can be detected in the frequency spectrum [37].

To compensate for these attacks, robust models desen-
sitize to high-frequency and instead shift their decisions
towards global cues that involve low-frequency informa-
tion, which can typically be observed in FFT-spectra of
perturbations after AT (e.g. [38], Fig. 8). The desensitiza-
tion of high-frequencies during training also results in more
robust models, as shown from various perspectives such
as injecting noise patches to inputs [21], blurring feature-
maps [39], splitting and regularizing frequency information
[19], or low-pass filtering intermediate feature-maps [40]
during training. There seem to be sufficient indicators to
reasonably assume that shifting the decisions toward low-
frequency information by removing the focus from high-
frequency is at least a necessary ingredient of robustness.
Clearly, AT encourages this shift, which can also be seen in
weights of convolution filters of robust models [41, 42].

Likewise, texture bias can also be analyzed from a fre-
quency perspective. Textures contain high-frequency infor-
mation while shapes can not be represented without low-
frequency bands. As non-robust neural networks naturally
prefer high-frequency information for predictions they rea-
son based on textures. Under AT, models rely less on

local high-frequency information and prioritize the lower-
frequent information, that encodes global structures such as
shapes. This effect can be well seen in the cue-conflict per-
formance where images contain both types of information
in the images, and models can choose which information
to prioritize. From an information perspective alone, both
choices would acceptable.

Ultimately, this perspective does not explain all findings
and other mechanics may influence the decision process.
For example, stylized performance improves under AT
for CNNs while the accuracy of Transformers, starting
at a higher level, is decreasing. It can just provide an
intuition of why the model decisions learn to shift towards
a more global, shape bias - given that the overall spectral
distribution remains very similar to the original training
data distribution in the cue-conflict category.

6. Conclusion
We have extended previous experiments that studied the

influence of ℓ2-AT on the reasoning of neural networks in
comparison to human reasoning. Our findings indicate, that
previous observations scale to ℓ∞-AT, other CNNs, and
even Transformers. In general, we find that robust Trans-
formers appear to be more similar to human reasoning than
CNNs as they perform better on OOD datasets and increas-
ingly reason based on shape information. Still, AT results
in degradation against some corruptions that do not seem
to affect humans or models trained without AT. Finally, we
propose an explanation of why AT enforces shape bias from
a frequency perspective: AT seems to hurt generalization
against OOD datasets where the spectral distribution sig-
nificantly diverges from the training data. In other cases,
AT causes the model to shift its decision from local high-
frequency information to global shape information, which
better resembles the behavior of humans.
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