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Abstract

Past work exploring adversarial vulnerability have fo-

cused on situations where an adversary can perturb all di-

mensions of model input. On the other hand, a range of

recent works consider the case where either (i) an adver-

sary can perturb a limited number of input parameters or

(ii) a subset of modalities in a multimodal problem. In both

of these cases, adversarial examples are effectively con-

strained to a subspace V in the ambient input space X . Mo-

tivated by this, in this work we investigate how adversarial

vulnerability depends on dim(V ). In particular, we show

that the adversarial success of standard PGD attacks with

`p norm constraints behaves like a monotonically increas-

ing function of ✏(dim(V )
dimX )

1
q where ✏ is the perturbation bud-

get and
1
p
+ 1

q
= 1, provided p > 1 (the case p = 1 presents

additional subtleties which we analyze in some detail). This

functional form can be easily derived from a simple toy lin-

ear model, and as such our results land further credence to

arguments that adversarial examples are endemic to locally

linear models on high dimensional spaces.

1. Introduction

Since they were first identified in [33], there has been
strong sense that a model’s vulnerability to adversarial ex-
amples is strongly connected to the dimension of its input
space. This connection has been mined by a range of works
which use it as a perspective with which to explain the
prevalence of adversarial examples in certain model types
(e.g., computer vision) – in Sec. 2 we provide a brief syn-
opsis of this research. As deep learning models are applied
to more and more safety critical applications, there is also
an increasing practical relevance to understanding any gen-
eral connections between adversarial vulnerability and the
properties of a problem. In such settings, a simple statistic
that can be easily computed (such as model input dimen-
sion) is useful for gauging the general adversarial risk for a

proposed deep learning system.
This is especially true when the proposed system uses

less familiar modalities/tasks to which one cannot easily re-
fer to studies in the literature. For example, suppose one
needs to evaluate the safety of applying deep learning to the
output of a range of different sensors. Past work has consid-
ered the ambient dimension in which this data is collected.
Should we worry less if a sensor captures a signal as a 50-
dimensional vector rather than a 5, 000-dimensional vector?
In this paper we take this line of reasoning a step further
and ask how this situation changes when instead of chang-
ing the ambient dimension we change the dimension of the
subspace in which one is constrained to perturb input. Such
a thought experiment has practical relevance. Suppose that
of the 500 input dimensions to our model, we believe that
an adversary is only likely to get access to 50 dimensions
(this may happen in multimodal settings where an adversary
has much better access to a subset of the modalities). How
should we compare this to a situation in which are only able
to perturb a fixed 100-dimensional subspace of the input?
How about a 5-dimensional subspace?

Motivated by this, in this work we revisit the connec-
tion between dimension and adversarial vulnerability. Un-
like most other works in this space, which look at suscep-
tibility to adversarial examples as a function of the num-
ber of input dimensions dim(X ) alone, we explore model
susceptibility to adversarial examples constrained to a sub-
space V ✓ X as a function of dim(V )/ dim(X ). We
find that unsurprisingly, for fixed dim(X ), as dim(V ) de-
creases average adversarial success rate (ASR) also de-
creases, though ASR only drops significantly when the quo-
tient dim(V )/ dim(X ) drops below around 10% (see Fig-
ure 1). In other words, a model remains vulnerable when
an adversary is only able to perturb a subset of input dimen-
sions, but as this subset covers an ever smaller fraction of
the available dimensions an adversary has to put increasing
effort into finding adversarial examples.

We further study how the adversarial budget ✏ with re-
spect to the `p-norm interacts with dim(V ) and dim(X ).



(a) (b)

Figure 1. (a) Success of PGD adversarial attacks on an ImageNet trained ResNet50, with `1-norm constraints on perturbation budget,
constrained to subspaces V ✓ X spanned by dimV randomly selected standard basis vectors. Adversarial examples are computed for
a random subsample of 10,000 datapoints from the ImageNet validations set. The x-axis is the ✏-bound used during example generation
and the different colored curves indicate the dimension dimV of the subspace to which the examples were constrained to, relative to the
dimension dimX (= 3 · 2242) of the ambient space. When only a small number of dimensions can be perturbed, adversarial examples
are challenging to generate even with large ✏-bounds. (b) These curves become aligned when we reparameterize the x-axis by scaling by
dimV
dimX .

We find that the relationships of ✏ to ASR for different
dim(V ) are nearly identical up to scaling: more specifically,
suppose that CV1 : R ! [0, 1] and CV2 : R ! [0, 1] map
adversarial budget to ASR when adversarial examples are
constrained to subspaces V1 and V2 respectively. We find
that

C1

⇣⇣dim(V1)

dim(X )

⌘1/q
✏
⌘
⇡ C1

⇣⇣dim(V2)

dim(X )

⌘1/q
✏
⌘

(1.1)

where q satisfies 1/p + 1/q = 1. This points to a strong
relationship between dim(V ), p, and ✏ that to our knowl-
edge is novel. It further tells us that risk from adversarial
examples can be mitigated by either restricting the dimen-
sions that data can be manipulated (dimV ) in or restrict-
ing the amount they can be manipulated before they are no-
ticed (✏). This relationship is consistent across values of
dim(V )/ dim(X ): if one wanted to understand the risk of
an adversary purturbing data in a 50-dimensional subspace
of a 500-dimensional-input space, one could for example
estimate the success rate of an adversary with access to the
entire input space and extrapolate using Eq. (1.1). Finally,
we provide a theoretical backing for our results as well as
analyze their implications on common theories behind the
prevalence of adversarial examples in Section 6.

In summary, our contributions in this paper include the
following.

• We run a range of experiments restricting adversarial
examples to a fixed subspace V of input space and ex-
plore how the dimension of V impacts adversarial suc-
cess rate (ASR).

• Our results show that there are predictable trade-offs
between ✏ and dim(V ). That is, we can scale ✏ and

dim(V ) (dependent on the `p-norm used) so that ASR
remains fixed.

• We provide a theoretical basis for our observations and
analyze what this says about different theories explain-
ing the existence of adversarial examples.

2. Related work

Why do adversarial examples exist?: There have
been many proposed explanations for the phenomena of
adversarial examples; we provide an incomplete but repre-
sentative sample. A number of works such as [5,29] present
explanations in terms of dimensionality curses. In [14]
it is argued that adversarial examples are a side-effect of
locally linear behavior of deep learning models, an idea that
is further investigated both theoretically and empirically
in [6]. This theme also appears in [3, 4], which (among
many other things) prove ReLU networks with multiple
layers are linear on large regions of input space.

Adversarial examples and input dimension: A range
of works have looked at the connection between the input
dimension of data to a model and the prevalence of adver-
sarial examples. Such works include [31], which simplifies
the set-up by approximating neural networks with their
gradients, hence reducing the problem to linear classifiers.
They vary input dimension by up-sampling CIFAR10. [29]
derives formulae relating adversarial vulnerability to model
input dimension dimX , adversarial budget ✏ (in arbitrary
`p norms, including p = 0) and notably properties of the
data distribution, and carries out experiments varying input
dimension by up-sampling MNIST. [5] includes theoretical



results of a similar flavor, and also varies input dimension
of image datasets by up-sampling as well as dimension-
reducing preprocessing operations like the singular value
decomposition. Unlike our work, none of these considered
adversarial examples constrained to subspaces V ⇢ X .1

Adversarial examples constrained to subspaces: There is
a continually expanding body of work on adversarial pertur-
bations constrained to submanifolds of the input space of a
model. [15,17,28,30,38] all study the vulnerability of neu-
ral networks to perturbations constrained to a subspace cor-
responding to some Fourier frequency range (for instance,
high, low or intermediate frequencies). [21, 39] study vul-
nerability to perturbations which modify color curves si-
multaneously at all locations of an image.

Among works most in line with the present one, [10]
studies the minimal norm perturbation � 2 V ✓ X re-
quired to move an input x 2 X across a decision boundary
of f . They provided theoretical results for linear classifiers
(and more general models in terms of curvature properties
of decision boundaries) as well as empirical results for sev-
eral image classifiers. The main theorems of [10] state that
the norm of the minimal perturbation � scales like

q
dimX
dimV

.
However, they do not directly connect these findings with
model error (a.k.a. adversarial success) and their analysis
is limited to the `2 norm (hence their theorems do not con-
tradict Fig. 1, which illustrates `1 adversarial success). On
the other hand, in this work we consider arbitrary ellp-norm
bounds and actually connect p to the rate of growth of adver-
sarial success rate. The work in [10] is also intimately con-
nected with the DeepFool attack [26],2 as well as [9,11]. In
contrast, we mostly focus on PGD attacks due to their uni-
versality ( [23]) and prevalence in the adversarial machine
learning literature.

A number of works such as [18, 32, 35] ask the opposite
of our question. Namely, what subspace V ⇢ X adversarial
perturbations tend to lie in. A consistent finding of [18, 32]
is that in situations where the data distribution lies on a man-
ifold M ✓ X , adversarial examples for data points x 2 M
tend to lie in the normal space NMx, whose dimension is
the codimension of M — [18] observes increasing vulnera-
bility as this codimension increases.

Perhaps the work most similar to what we present here is
[8], which investigates the phenomena of low-dimensional
adversarial perturbations with theoretical results and empir-
ical confirmations. Our findings are generally consistent
with theirs, and we build on [8] with an extensive empirical
analysis of simultaneous dependence of adversarial success

1At first glance it might seem the SVD preprocessing lands in a proper
subspace V ⇢ X , but it is more accurate to say it decreases the ambient
dimension dimX .

2Which does implicitly indicate the correct scaling for more general
`p-metrics.

on dimV , ✏ and the metric under consideration (i.e. `2 or
`1). In addition, our experiments involve much larger mod-
els and datasets — we hope the description of our methods
in Appendix B illustrates that this scaling-up is not trivial.

Finally we note that our results can be tied to a range of
studies that look at statistics of adversarial examples with
respect to different situations. For example, [6] studies
scaling properties of adversarial success with respect to
the perturbation constraint ✏, obtaining results qualitatively
similar to ours along that axis of variation.

3. Adversarial examples and subspaces

Let f : X ! Y be a classification model, where X is the
space of input data and Y the space of model outputs. We
focus on image classifiers so that X is a space of pixel val-
ues (a hypercube of the form [0, 1]n for some n depending
on image resolution) and Y = {1, . . . ,K} with K the num-
ber of classes. The models f we consider are deep neural
networks. By definition an adversarial example for a data
point (x, y) 2 X ⇥Y is a model input x0 = x+ � 2 X such
that

• f(x) = y but f(x0) 6= y (x0 is misclassified) and
• d(x0, x) < ✏ where d is some chosen metric and ✏ > 0

some chosen constraint (x0 is close to x).
We will measure adversarial success as the probability that
f(x0) 6= y; this probability depends on the algorithm used
to generate x0 = x + � 2 X , and empirically can be esti-
mated by generating perturbations for all x in a validation
dataset and computing the error of f on the resulting “ad-
versarial dataset.”3

Standard methods of generating adversarial examples
[14, 33] perturb model inputs by independently modifying
all pixel values, however as early as [14] it was observed
that sparse perturbations modifying only a subset of pixel
values were also effective. By now there exist a plethora of
adversarial example generation techniques which optimize
for perturbations � constrained to a subspace4 V ✓ X , in
many cases with dimV a small fraction of dimX — a com-
mon aim of these methods is to modify x in a way that is
perceptually natural (so that x0 will appear innocuous even
to a human-in-the-loop) while using relatively few parame-
ters. We discuss a representative sample of such techniques
in Sec. 2. Such widespread interest in constrained adversar-
ial perturbations � 2 V ⇢ X raises a foundational question:

how does adversarial success depend on
dimV

dimX ? (3.1)

In Sec. 4 we design experiments to measure this dependency
3In particular, we do not require the model to correctly classify the

unperturbed input, i.e. we do not restrict attention to data points where
f(x) = y.

4Sometimes, but not always, an affine linear subspace.



for a variety of families of subspaces V ⇢ X (including
those spanned by random subsets of pixels or random sets
of orthogonal vectors) and metrics (including `2 and `1).5
We repeatedly find that success of adversarial attacks con-
strained in the `p metric is a function of ✏ · ( dimV

dimX )
1
q , where

1
p
+ 1

q
= 1 — this is illustrated in Fig. 1 and described

further in Sec. 5.2.
This experiment serves as a lens through which to in-

vestigate two common, not-necessarily-mutually-exclusive
explanations for the prevalence of adversarial examples in
deep learning — these are:

(i) Adversarial examples are a result of the curse of

dimensionality: a deep learning model f : X ! Y
subdivides the high dimensional input space X into
decision regions f�1(y) ✓ X . A variety of well-
studied toy models, such as binary linear classification
of points on a sphere Sn�1 ⇢ Rn, have the property
that in high dimensions every x 2 f�1(y) lies very
close to the boundary of f�1(y) (for linear classifica-
tion of points on Sn�1 this is the statement that “as
n!1, all the volume lies near the equator”).

(ii) Adversarial examples are a consequence of (locally)

linear behavior: At least locally, f is well approxi-
mated by an affine linear function Wx+ b, and for ap-
propriately chosen � we can make |W �| large enough
to ensure f(x+ �) 6= f(x).

These two explanations are more closely related than they
might initially appear. For example, in Item (ii) the num-
ber of coefficients of w equals dimX , and as pointed out
in [14] the fast gradient sign method exploits the fact that
when � = � sign(w), wT � = �

P
i
|wi| = �|w|1 which

scales with dimX (provided the scale of the coefficients
w1, . . . , wdimX is fixed). Here the idea is that the number
of terms in the sum

P
i
|wi| is dimX , so if the coefficients

wi are IID E[
P

i
|wi|] = dimX ·E[|w1|] — in some sense,

this is also a curse of dimensionality. In Sec. 6 we compare
the various theoretically predicted scaling properties of ad-
versarial success with respect to ✏ and dimV , lifted from
papers arguing for Item (i) or Item (ii).

4. Perturbations in random subspaces

Designing an experiment to measure adversarial success
with varying dimV and ✏ requires making a number of
choices:

(i) a distribution of subspaces V ✓ X to sample from, or
more technically speaking a probability distribution on
a Grassmannian Gr(dimV, dimX ),

(ii) a metric d used to define constraints on perturbations,
and

(iii) an adversarial example generation algorithm A.

5By definition for any p � 1 the `p-distance between points x, y 2 Rn

is (
P

i |xi � yi|p)
1
p .

To establish a baseline, we consider the case where the dis-
tribution of subspaces is either uniform or the distribution
obtained by taking V to be the span of dimV standard ba-
sis vectors ei 2 X sampled uniformly. We restrict attention
to the `p metrics for p 2 {2,1}, and look at adversarial ex-
amples generated by projected gradient descent as in [23].
We also must specify (i) a dataset D ⇢ X ⇥ Y of images,
and (ii) an image classifer f : X ! Y .

Having made these decisions, for a fixed dimension d
and constraint ✏ and for each data point (x, y) 2 D, we sam-
ple a d-dimensional subspace V ✓ X according to the spec-
ified distribution on Gr(d, dimX ), generate an adversarial
perturbation x0 2 X constrained to V and with d(x0, x)  ✏
using the algorithm A, and record whether the attack was
successful, that is: 1(f(x0) 6= y). To obtain a low-variance
estimate of adversarial success we average 1(f(x0) 6= y)
over the dataset D (or a reasonably large subsample thereof)
and sample a different subspace V ✓ X for each datapoint
(x, y) to approximate

success(d, ✏) = P (f(x0) 6= y). (4.1)

It should be emphasized that we are computing statistics
for random subspaces; as other works discussed in Sec. 2
have shown, there are specific subspaces in which a higher
adversarial success rate can likely be achieved.

5. Experiments

5.1. Datasets and models

We experiment with several image classification data
sets and model architectures, of increasing image resolution
and network capacity:

• The small convolutional network used in [23] trained
on the MNIST dataset [22].

• A ResNet9 [16] trained on the CIFAR10 dataset [19].
• A ResNet50 [16] trained on the ImageNet dataset [7].

For further details on model architectures and training, we
refer to Appendix B.1.

5.2. Functional form of adversarial success

We may view the adversarial successes
success(dimV, ✏) as a sequence of functions of ✏,
one for each dimV 2 {1, . . . , dimX} as shown in the top
plot of Fig. 1, which displays results of `1 PGD adversarial
attacks constrained to spans of subsets of standard basis
vectors for a ResNet50 trained on ImageNet. It appears
that for varying dimV , the curves success(dimV, ✏) differ
by x-axis scalings, that is, transformations of the form
success(dimV, ✏)  success(dimV,�✏) for some � > 0.
This is indeed the case: the bottom plot in Fig. 1 shows that
the curves success(dimV, ✏ · dimV

dimX ) are almost identical.
Figures 5 and 6 show the same phenomena for a 2-layer
CNN on MNIST and a ResNet9 on CIFAR10.



(a) (b)

Figure 2. (a) Success of PGD adversarial attacks on an ImageNet trained ResNet50, with `2-norm constraints on perturbation budget,
constrained to subspaces V ✓ X spanned by dimV randomly selected standard basis vectors. Adversarial examples are computed for
a random subsample of 10,000 datapoints from the ImageNet validations set. The x-axis is the ✏-bound used during example generation
and the different colored curves indicate the dimension dimV of the subspace to which the examples were constrained to, relative to the
dimension dimX (= 3 · 2242) of the ambient space. When only a small number of dimensions can be perturbed, adversarial examples
are challenging to generate even with large ✏-bounds. (b) These curves become aligned when we reparameterize the x-axis by scaling byq

dimV
dimX .

We can think of this analysis as expressing a decompo-

sition success(dimV, ✏) = g(✏ · dimV

dimX ) into a composi-
tion of two functions, the first being the map (dimV, ✏) 7!
✏· dimV

dimX , the second map g being some single-variable func-
tion applied to ✏ · dimV

dimX . We do not attempt to identify this
g.

Figure 2 shows analogous results for PGD adversarial
examples constrained in the `2-norm (with plots for other
architecture types and models in Figure 7 and Figure 8).
In this case, the reparametrization of the x-axis that re-
sults in almost identical curves is obtained by replacing
success(dimV, ✏) with success(dimV, ✏ ·

q
dimV

dimX ). This
shows that the functional form of adversarial success in
terms of ✏ and dimV depends on the norm constraining ad-
versarial perturbations. In the following section, we argue
that as long as p > 1 adversarial success with `p-constraints
depends on ✏d

1
q where 1

p
+ 1

q
= 1, a hypothesis consistent

with experimental results in Fig. 2 and Fig. 1.
The case p = 1 is more complicated, and we defer its

analysis to Appendix B.5.

6. Comparison with existing theoretical predic-

tions

There are many existing works investigating the math-
ematical source of adversarial examples for deep learning
models. Several of these include (either as a main result or
a byproduct of calculations) predictions for the functional
form of adversarial success in terms of perturbation budget
✏ and the dimension dimV to which perturbations are con-
strained. We reviewed a subsample of such papers. Note

that most of these papers (the exceptions being [8, 10]) fo-
cus on the dimension of the input space of a model alone
and do not consider the additional constraint that adversar-
ial examples are confined to a subspace.

(i) From the analysis in [14] one can predict that adver-
sarial success is a function of ✏ dimV

dimX
(for p =1).

(ii) [6, 8, 10] predict that adversarial success is a function
of ✏( dimV

dimX )
1
2 (for p = 2).

(iii) From the analysis in [26,31] one can predict that adver-
sarial success is a function of ✏( dimV

dimX )
1
q (for 1

p
+ 1

q
=

1).
(iv) [29] predicts that adversarial success is a function of

✏ dimV
1
2�

1
min(2,p) .

The predictions of Items (i) to (iii) are all consistent with our
experimental results, suggesting that the situation where ad-
versarial examples are constrained to a subspace of dimen-
sion d is effectively equivalent to the unconstrained situa-
tion where data is found in an ambient space of dimension d.
Those of Item (iv) are not obviously consistent with our ex-
perimental data, although we refrain from saying that they
are inconsistent since the analysis of [29] involves a series
of inequalities, and it is unclear how the predictions would
change if one used slightly different approximations.6

The dependence of adversarial success on ✏( dimV

dimX )
1
q can

be derived from the simplest possible toy model, namely
binary linear classification. Let X = Rn and suppose

f(x) = wTx+ b, for some w 2 Rn, b 2 R. (6.1)

6Moreover, the aim of [29] was to demonstrate prevalence of adversar-
ial examples, not to estimate functional forms for adversarial success.



Let V ✓ Rn be a subspace with dimV = d. We will as-
sume there exists an isometry U : Rd '�! V with respect
to the `p metric — note that this puts strong restrictions on
U and V when p 6= 2 (in that case, V must be spanned by
standard basis vectors and U must be an orthogonal matrix
with entries in {�1, 0, 1}). The point x admits an `p adver-
sarial example in the subspace V with budget ✏, i.e. there is
a � 2 V such that sign f(x + �) 6= sign f(x) and |�|p  ✏,
if and only if the `p margin of x

min
�2V

�
|�|p

�� f(x+ �) = 0
 

(6.2)

is at most ✏.

Lemma 6.3. With the above definitions and notation and

with
1
p
+ 1

q
= 1,

min
�2V

�
|�|p

�� f(x+ �) = 0
 
=

|wTx+ b|
|wTU |q

. (6.4)

Appendix A contains a proof. Our experimental results
only measure the probability that x admits an `p-adversarial
example in the subspace V with budget ✏. By the above
lemma, this probability is P ( |w

T
x+b|

|wTU |q  ✏), which can be
rewritten as P (|wTx+ b|  ✏|wTU |q). We claim that when
p > 1 and V (equivalently U ) is sampled with sufficient
randomness

E
⇥
|wTU |q

⇤
=
⇣ d
n

⌘ 1
q |w|q. (6.5)

In the case where V is generated by a subset, say
{ei1 , . . . , eid} of basis vectors, this can be argued as fol-
lows:

|wTU |q
q

|w|qq
=

P
d

j=1|wij |qP
n

i=1|wi|q

=
d

n

1
d

P
d

j=1|wij |q
1
n

P
n

i=1|wi|q

(6.6)

When the basis subset {ei1 , . . . , eid} is sampled uniformly7

we claim that that the expectation of the term 1
d

P
d

j=1|wij |q

is exactly 1
n

P
n

i=1|wi|q (at least when d = 1 this is imme-
diate). Thus after averaging over many random subspaces
V ,

E
h 1

d

P
d

j=1|wij |q
1
n

P
n

i=1|wi|q
i
= 1, hence E

h |wTU |q
q

|w|qq

i
=

d

n
. (6.7)

Taking q-th roots and rearranging gives Eq. (6.5).
Note that in our experiments we compute something

analogous to P (|wTx+b|  ✏|wTU |q) where probability is
7For example, by taking i1, . . . , id = �(1), . . . ,�(d) where � is a

uniformly random permutation of {1, . . . , n}.

with respect to the underlying distribution of x and choice
of U . Using a “point estimate” and replacing |wTU |q with
its mean ( d

n
)

1
q |w|q , one would simplify to P (|wTx + b| 

✏( d
n
)

1
q |w|q), which since we treat w, b and the distribution

of x as given is a function of ✏( d
n
)

1
q .

When p = 1, so q = 1, Lemma 6.3 remains valid but
the tricks applied in Eqs. (6.6) and (6.7) do not make sense,
and indeed our experimental results in Appendix B.5 sug-
gest dependence of adversarial success on ✏( dimV

dimX )
1
q alone

breaks down somewhat in this case. For further analysis of
this case, we refer to Appendix B.5.

7. Limitations

Adversarial examples given by gradient-based perturba-
tions with `p constraints make up only one (and arguably,
a narrow) type of distribution-shifted test data causing ma-
chine learning model failure. For further discussion of this
point see [12, 13]. While we take inspiration from ad-
versarial example generators constraining perturbations to
subspaces (surveyed in Sec. 2), our experiments are lim-
ited to the baseline of random subspace selection (whereas
most subspace-constrained adversarial example generators
choose their subspace more carefully). We also only exper-
iment with image classifiers, though adversarial examples
have been found to exist for essentially all deep learning
systems [20, 25, 37].

8. Conclusion and open questions

We demonstrate that the adversarial success
success(dimV, ✏) of PGD attacks constrained to a
(random) dimV -dimensional subspace V of the model
input space X with `p budget ✏ (and p > 1) is essentially a
function of the single variable ✏( dimV

dimX )
1
q where 1

p
+ 1

q
= 1

(rather than a function of two variables as considered in
prior work). The fact that this relationship can be derived
in the toy example of a linear binary classifier, and holds
quite sharply in all our experiments, seems to lend further
credence to the theory that adversarial examples are a
byproduct of the locally linear behavior of neural networks
with high dimensional input spaces.
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