
A. Derivations

Proof of Lemma 6.3. Recall that our goal is to solve the
constrained optimization problem

min{|�|p | � 2 Rd, wT (x+ U�) + b = 0} (A.1)

Using the method of Lagrange multipliers, we know that a
minimizer � 2 Rd must satisfy the critical point condition

�UTw 2 @|�|p (A.2)

where @|�|p is the subdifferential of the `p-norm at � 2 Rd.
It is a classical fact (see e.g. [1, Prop. 1.2]) that

@|�|p =

(
{v 2 Rd | |v|q 1} if � = 0

{v 2 Rd | |v|q = 1 and vT � = |�|p} otherwise.
(A.3)

If the first case occurs, clearly the minimum of Eq. (A.1) is
0, and since � = 0 we obtain

0 = wT (x+ U�) + b = wTx+ b, (A.4)

hence in this case |wT
x+b|

|wTU |q = 0 as well and the lemma holds.
In the case where � 6= 0, combining Eqs. (A.2) and (A.3)

we see that for some �

|�UTw|q = 1 and �wTU� = |�|p; (A.5)

from the first equation we immediately identify |�| =
|UTw|�1

q
, and taking absolute values on both sides of the

second then gives

|�|p = |�||wTU�|

=
|wTU�|
|UTw|q

.
(A.6)

Finally, recalling wT (x + U�) + b = 0 gives |wTU�| =
|wTx+ b|, completing the proof.

B. Experimental details

B.1. Model architectures and training details

For our MNIST experiments we use the sim-
ple 2 layer convolutional network of [23] —
we ported the TensorFlow code available at
https://github.com/MadryLab/mnist_challenge to Py-
Torch [27]. We train it using SGD with momentum 0.9,
batch size 1024 and weight decay 10�4 for 100 epochs,
with initial learning rate 10�3 and learning rate drops by a
factor of 0.1 whenever validation accuracy doesn’t improve
by 1% for 10 epochs. We save the weights with the best
validation accuracy (⇡ 98.95%).

For our CIFAR10 experiments we use the ResNet9 from
MosaicML’s Composer library [34]. We train it with SGD

with momentum 0.9, batch size 512 and weight decay 10�4

for 160 epochs, with initial learning rate 10�1 and learning
rate drops by a factor of 0.1 whenever validation accuracy
doesn’t improve by 1% for 10 epochs. We save the weights
with the best validation accuracy (⇡ 91.72%).

For our ImageNet experiments we use the ResNet50
from TorchVision [24]. We train it with SGD with mo-
mentum 0.9 and weight decay 10�4 for 100 epochs, with
initial learning rate 1.0 and learning rate drops by a factor
of 0.1 whenever validation accuracy doesn’t improve by 1%
for 10 epochs. Due to distributed data parallel training with
batches of size 512 on each of 8 GPUs, our effective batch
size is 8 · 512 = 4096. We save the weights with the best
validation accuracy (⇡ 72.84%).

B.2. Tuning PGD step sizes

In our experiments we generate a large number of PGD
adversarial examples for a wide range of perturbation con-
straints ✏ and in subspaces of varying dimension. In or-
der for our numerical experiments to address our questions
about the behavior of success(d, ✏), it is crucial that our
PGD algorithm for optimizing � has the capacity to achieve
the boundary case |�|p = ✏. We found that with some stan-
dard choices of step size, this did not occur, resulting in an
unpleasant situation where the effective budget was signifi-
cantly lower than ✏ simply due to a too-small PGD step size.
Here we briefly discuss a principled choice of PGD step size
that accounts for the dimension d of the subspace to which
� is constrained. First we must specify the PGD algorithm
being used.

Our basic PGD implementation (adapted from [23]) iter-
ates the following: we constrain � to a d-dimensional sub-
space V ✓ X using an isometry U : Rd ! V as in Sec. 6,
and initialize �0 = 0 . Then, for t = 1, . . . , T where T is the
maximum number of steps, we let gt = r�`(f(x+U�), y)
where ` is cross entropy, and replace it with the “normal-
ized” gradient

g̃t :=

(
gt

|gt|p , p 2 {1, 2}
sign gt, p = 1.

(B.1)

We then project �t�1 + ⌘g̃t, where ⌘ is a learning rate, onto
the `p ✏-ball centered at 0 to obtain in the case p 2 {1, 2}

�t =

(
✏ �t�1+⌘g̃t

|�t�1+⌘g̃t|p , |�t�1 + ⌘g̃t|p > ✏

�t�1 + ⌘g̃t, otherwise
(B.2)

and in the case p = 1

�t =

(
✏ �t�1+⌘g̃t

max{�t�1+⌘g̃t} , max{�t�1 + ⌘g̃t} > ✏

�t�1 + ⌘g̃t, otherwise.
(B.3)

Finally, we must ensure that x+U� lies in the image hyper-
cube [0, 1]C⇥H⇥W (in our implementation pixel values lie

in [0, 1]). To do this, we let clip : R ! [0, 1] be the clipping
function, i.e. clip(x) = max{0,min{x, 1}}, and replace �
with

UT (clip(x+ U�)� x) (B.4)
(here we use the fact that U is orthogonal and so UT is a
left inverse for U).

To set the step size ⌘, we can adopt the heuristic that
the �t behave like a random walk, i.e. that the normalized
gradients g̃t are sampled IID from some distribution (this
almost certainly quite false, but we found it to be useful in
a back-of-the-envelope sort of way). We will even further
assume that for each t the coordinates of g̃t are IID. Ignoring
projection and clipping, we have �T = ⌘

P
T

t=1 g̃t. In the
case p = 2, using the supposed IID-ness we see that

E[|�|22] = ⌘2
TX

t=1

|g̃t|22 = ⌘2T. (B.5)

Since we want to ensure the left hand side is at least ✏, we
obtain the step size

⌘ =
✏p
T
. (B.6)

In practice we multiply the above by 2 for good measure.8
In the case p = 1, by our IID-ness assumptions and the fact
that by definition g̃t = sign gt, the individual coordinates
g̃t,j for j = 1, . . . , d are IID samples from {±1} and so

|�T |1 = ⌘
p
T max

j=1,...,d
{| 1p

T

TX

t=1

g̃t,j |} (B.7)

The distribution of each term 1p
T

P
T

t=1 g̃t,j tends towards
a Gaussian distribution with mean 0 and variance 1 by the
central limit theorem. — letting �(x) be the standard nor-
mal CDF, the CDF of each | 1p

T

P
T

t=1 g̃t,j | is approximated
by

F (x) := �(x)� �(�x). (B.8)
By [2], the distribution of the max occuring in Eq. (B.7)
is concentrated around the d�1

d
-th quantile of the CDF

Eq. (B.8), i.e. F�1(1 � 1
d
). Assuming d is relatively

large, so that 1 � 1
d

is near 1, we ignore the �(�x) term
in Eq. (B.8) for the purposes of inversion and get

F�1(1� 1

d
) ⇡ ��1(1� 1

d
) (B.9)

Recall that our objective is to ensure that |�T |1 � ✏. By
the above arguments, this translates to

✏ ⌘
p
T��1(1� 1

d
), i.e.

⌘ ⇡ ✏p
T��1(1� 1

d
)
.

(B.10)

8Note that this is larger than what is suggested in [23, p. 12, section
“Resistance for different values ...”], which divides by T . By “for good
measure” we mean that our primary concern is using too small of a step
size.

Again, in practice we multiply by 2 for good measure.
Observe that while our `2 step size is independent of d,
Eq. (B.10) does depend on d. In fact, as d ! 1 the step
size goes to 0, but very slowly (for d = 3 · 2242, the dimen-
sion of ImageNet images, ��1(1� 1

d
) ⇡ 4.36).

For the p = 1 case, we use a heuristic similar to that of
p = 2 above; explicitly, we set

⌘ =
p
2⇡

✏p
T

B.3. Adversarial example generation

For each dataset and model, we select a range of pertur-
bation budgets ✏ and subspace dimensions d, in both cases
logarithmically spaced between minimum and maximal val-
ues of ✏ and d, with as many grid points as we can afford
(for MNIST and CIFAR, 32 different values of each, for
ImageNet only 8 of each).

For each pair (✏, d) we loop over the entire validation
set of the relevant dataset, with the exception of ImageNet
where we randomly sample 10,000 of the 50,000 images.
We randomly sample a distinct subspace Vi ⇢ X for each
validation datapoint (xi, yi) (as above, by randomly gener-
ating a matrix U whose columns span V). We then loop
through validation datapoints (xi, yi) and corresponding
matrices Ui and compute PGD adversarial examples as de-
scribed above, with T = 16 steps. We compute the er-
ror over the validation set (subsampled in the case of Ima-
geNet), i.e.

1� 1

N

NX

i=1

1(f(xi + U�i) = yi).

Remark B.11. We intended to permute the matrices Ui ac-
cross several runs through the validation dataset {(xi, yi)}
to provide error bars with respect to the distribution of sub-
spaces. Due to a coding oversight, they didn’t actually get
permuted. For this reason our plots lack confidence inter-
vals, however we hope that the tight agreement of all curves
after our x-axis reparametrization illustrates that such error
bars would be quite small.

B.4. Subspaces sampled uniformly from the Grass-

mannian

In the case of MNIST and for p = 2, we can also sample
subspaces uniformly from the Grassmannian Gr(d, dimX)
by sampling matrices U of shape n ⇥ d with orthonor-
mal columns using the QR decomposition as in used in the
method scipy.stats.ortho_group of [36]. The re-
sults, shown in Fig. 3, are similar to those in Figs. 5a and 5b.

B.5. Analysis of the 1-norm case

When p = 1, q = 1 and so the arguments used in
Eqs. (6.6) and (6.7) do not make sense as written; more-

(a) (b)

Figure 3. (a) Projected gradient descent (PGD) adversarial examples for the 2-layer convolutional neural network of [23] on the MNIST
validation set. In these experiments we generated the subspaces V by sampling uniformly from the Grassmannian, and constrain per-
turbations using the `2 norm. Error bars represent standard deviations of 5 passes over the MNIST validation set. (b) The same data,

reparametrized by plotting ✏ ·
q

dimV
dimX along the x-axis. Note: x-axes are log-scale.

over, while we have not explicitly verified this, it seems that
attempting to take a limit of those equations as q ! 1 one
will encounter an “1/1” case, and it’s not clear that e.g.
L’Hospital’s rule helps at all.

Instead, we propose a different estimate of the quotient

|wTU |1
|w|1

, (B.12)

proceeding as follows. We will again assume, as is the case
in our experiments, that U is obtained by subsampling basis
vectors, say {ei1 , . . . , eid}. Then

|wTU |1
|w|1

=
maxj{|wij |}
maxi{|wi|}

(B.13)

The question, then, is how much smaller the max over a
random dimV -element subset of the absolute values |wi|
is than the max over all dimX of them. The need to make
some assumption on the distribution the |wi| are drawn from
seems unavoidable at this point: we suppose the coefficients
wi come from a standard normal distribution, so that their
absolute values come from a “half-normal” (equivalently
�1) distribution: if � is the standard normal cumulative
distribution function, with this assumption the cumulative
distribution function of the |wi| is

F (x) := �(x)� �(�x). (B.14)

We make a further crude estimate that the numerator and de-
nominator are maxs of independent samples of size dimV
and dimX respectively;9 then the theory of quantiles in

9This is of course quite false, as the numerator differs from the denom-
inator by taking the max over a subsample. How can one deal with this
step more realistically?

large samples [2] suggests the estimates

max
j

{|wij |} ⇡ F�1(1� 1

dimV
) and

max
i

{|wi|} ⇡ F�1(1� 1

dimX)

(B.15)

leading to the overall estimate

|wTU |1
|w|1

⇡
F�1(1� 1

dimV
)

F�1(1� 1
dimX)

(B.16)

Figure 4 shows the result of using Eq. (B.16) as a stand-
in for (dimV

dimX)
1
q in the case where p = 1, on the MNIST

dataset. One immediate observation is that at least for
dimV a significant fraction of dimX (e.g. dimV

dimX � 0.1) it
does appear that the curves success(dimV, ✏) converge to a
common limit, as one would expect from a naïve application
of a factorization success(dimV, ✏) = g(✏(dimV

dimX)
1
1) =

g(✏). The reparameterization of Eq. (B.16) seems to do
okay at accounting for behavior in the lowest dimensions,
at the expense of over-compensating and pushing the curves
corresponding to low-to-medium values of dimV to the left
of the curve corresponding to dimV = dimX . There are
various potential causes of this undesirable effect (roughly
one per crude oversimplification in the above analysis). Re-
sults for CIFAR10 and ImageNet can be found in Fig. 9 and
Fig. 10 respectively. One concerning aspect of those two
results is we see downturns in the curves success(dimV, ✏)
for the highest values of ✏, suggesting there may have been
issues with our PGD optimizer in the p = 1 case.

One question we had was whether these results were im-
pacted by sub-optimal PGD optimization. A reason for ask-
ing this is that the p = 1 case of Eq. (B.1) is arguably incor-
rect: the “correct” way of deriving these generalized Fast
Gradient Sign Method (FGSM) steps is through the anal-
ysis of Appendix A. Assuming U = I for simplicity, one

(a) (b)

Figure 4. (a) Success of PGD adversarial attacks on an MNIST trained small convolutional network, with `1-norm constraints on per-
turbation budget, constrained to subspaces V ✓ X spanned by dimV randomly selected standard basis vectors. Adversarial examples
are computed for all datapoints in the MNIST validation set. The x-axis is the ✏-bound used during example generation and the different
colored curves indicate the dimension dimV of the subspace to which the examples were constrained to, relative to the dimension dimX
(= 282) of the ambient space. (b) These curves become more aligned when we reparameterize the x-axis by scaling by F (1� 1

dimV)

F (1� 1
dimX)

, where
F is the cummulative distribution function of the absolute value of a standard normal random variable.

sees that wT � = |w|1|�|1, and one can show this occurs if
and only if:

• letting A = argmaxi{|wi|} ✓ {1, . . . , n} (the
argmax of |wi|, which is a set in general although a
single index with probability 1), �i = 0 if i /2 A.

• sign �i = signwi for all i 2 A.
In the case where A = {a} (i.e. |wi| has a unique maxi-
mum) we obtain the simplified solution � = (c signwi)ea
(where ea is the a-th standard basis vector. Hence for p = 1,
one can argue that we should use

g̃t := eargmaxi{|wi|} (B.17)

We found that while this method performed similarly to that
of Eq. (B.1) for small values of ✏, it struggled for large ✏
and failed at the scale of ImageNet input space (see). A
reasonable suspicion is that the number of basis directions
selected by Eq. (B.17) is bounded by the number of PGD
iterations, and that when this number of iterations is far is
smaller than the input dimension Eq. (B.17) underexplores.
However we leave further analysis to future work.

C. Additional experimental results

(a) (b)

Figure 5. Plot for experiments analogous to those found in Figure 1 but run with a 2-layer CNN trained and evaluated on MNIST.

(a) (b)

Figure 6. Plot for experiments analogous to those found in Figure 1 but run with a ResNet9 trained and evaluated on CIFAR10.

(a) (b)

Figure 7. Plot for experiments analogous to those found in Figure 2 but run with a 2-layer CNN trained and evaluated on MNIST.

(a) (b)

Figure 8. Plot for experiments analogous to those found in Figure 2 but run with a ResNet9 trained and evaluated on CIFAR10.

(a) (b)

Figure 9. Plot for experiments analogous to those found in Figure 4 but run with a ResNet9 trained and evaluated on CIFAR10.

(a) (b)

Figure 10. Plot for experiments analogous to those found in Fig. 4 but run with a ResNet50 trained and evaluated on ImageNet.

(a) (b)

Figure 11. Plot for experiments analogous to those found in Figure 4, the only difference being that we use the FGSM step of Eq. (B.17).

(a) (b)

Figure 12. Plot for experiments analogous to those found in Figure 4 but run with a ResNet9 trained and evaluated on CIFAR10, using the
FGSM step of Eq. (B.17).

(a) (b)

Figure 13. Plot for experiments analogous to those found in Fig. 4 but run with a ResNet50 trained and evaluated on ImageNet, using the
FGSM step of Eq. (B.17).

