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Abstract

Although fast adversarial training provides an effi-
cient approach for building robust networks, it may suf-
fer from a serious problem known as catastrophic overfit-
ting (CO), where multi-step robust accuracy suddenly col-
lapses to zero. In this paper, we for the first time decouple
single-step adversarial examples into data-information and
self-information, which reveals an interesting phenomenon
called “self-fitting”. Self-fitting, i.e., the network learns
the self-information embedded in single-step perturbations,
naturally leads to the occurrence of CO. When self-fitting
occurs, the network experiences an obvious “channel dif-
ferentiation” phenomenon that some convolution channels
accounting for recognizing self-information become domi-
nant, while others for data-information are suppressed. In
this way, the network can only recognize images with suf-
ficient self-information and loses generalization ability to
other types of data. Based on self-fitting, we provide new
insights into the existing methods to mitigate CO and ex-
tend CO to multi-step adversarial training. Our findings re-
veal a self-learning mechanism in adversarial training and
open up new perspectives for suppressing different kinds of
information to mitigate CO.

1. Introduction
Deep neural networks (DNNs) suffer from a significant

threat from adversarial attacks, which deceive DNNs by
adding invisible perturbations to the inputs [24]. In this re-
gard, how to defend DNNs against such malicious attacks
has attracted much attention [5, 6, 10, 18, 28]. Adversar-
ial training (AT), which directly augments the datasets with
adversarial examples (AEs), is considered one of the most
effective defense methods [18]. However, standard AT con-
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Figure 1. Illustration of self-fitting and channel differentiation
phenomenon. (Left) A network with CO has a clean accuracy of
75.9% and an FGSM accuracy of 99.3%. The prediction of FGSM
examples is determined by the label used to generate single-step
perturbation, which suggests that the DNN learns to recognize the
self-information that the network embeds in the single-step per-
turbation. (Right) After pruning only one channel, the pertur-
bation becomes adversarial again, leading to a drop of 86.3% in
FGSM accuracy, while the clean accuracy only increases by 0.4%.
The pruned channel recognizes FGSM examples which contain
self-information while others recognize clean examples, suggest-
ing that different parts fit different kinds of information.

sumes great computation as it involves multiple forward and
backward propagations to generate adversarial examples.

To address such prohibitive burdens, single-step adver-
sarial training (also known as fast adversarial training, FAT
[26]) is proposed to generate adversarial examples effi-
ciently via simply one-step gradient propagation. Unfor-
tunately, a severe issue arises that during the training where
multi-step (PGD) robust accuracy [18] can suddenly drop
to zero within a few epochs, while the single-step robust
accuracy increases rapidly. Such dramatic phenomenon is
referred as “catastrophic overfitting” (CO) [26].

Currently, methods for resolving CO can be broadly clas-
sified into two categories: generating diverse AEs [4,15,32]
and applying proper regularization techniques [2,22]. These
methods are designed based on a consensus that DNNs lose



robustness against multi-step attacks due to overfitting to
single-step adversarial examples. More specifically, most
of them have either directly or implicitly argued that the
generated adversarial perturbations are “meaningless” af-
ter CO, rendering them to be ineffective for model robust-
ness [2,19]. There are also some recent works studying CO
from a data-feature perspective, trying to create a connec-
tion between single-step AEs and the intrinsic properties of
data distribution [30]. However, the effects of model infor-
mation on generating AEs have not been studied, and we
will demonstrate its importance in our research.

In this paper, we decouple single-step AEs after CO
into two parts: the data-information part and the self-
information part. Based on this, we then interpret CO from
a new “self-fitting” perspective that DNN eventually learns
to recognize the self-information embedded in the single-
step adversarial perturbations. Instead of being harmful,
such self-information conversely helps the network rec-
ognize single-step AEs, which were considered meaning-
less previously. For example, on a ResNet18 [12] trained
on Cifar10 [16], even if the target labels are completely
shuffled, the network still holds an FGSM (Fast Gradient
Sign Method [11]) robust accuracy of 90% after CO, which
should be under 10% for a normal trained network due to
meaningless labels and attack operations. This suggests that
after CO, the network makes predictions mainly based on
adversarial perturbations, i.e., the self-information, instead
of the data information. In this way, the network prediction
is consistent with the random labels for generating AEs.

In more detail, DNNs use different structures to learn dif-
ferent information [13, 20, 25]. We find that this is also true
for self-fitting such that there are special channels for fitting
self-information, namely ”channel differentiation”. Specif-
ically, channels with high variance mainly recognize attack
information, i.e., the self-information, while other channels
identify clean examples. As shown in Fig. 1, by pruning
only one channel with the highest variance, the FGSM ac-
curacy of a ResNet18 with CO decreases from 99.3% to
13.0%, while the clean accuracy increases from 75.9% to
76.3%. That is this channel is mainly in charge of recogniz-
ing the self-fitting information.

From the view of self-fitting, we further give new in-
sights into the existing methods to mitigate CO. For exam-
ple, only adversarial initialization cannot prevent CO while
proper regularization is necessary. We could postpone the
happening of CO by suppressing channels that recognize
self-fitting information. We also extend CO to multi-step
AT, revealing that CO can also happen in multi-step AT
with few iterations or large step sizes. Besides, the chan-
nel differentiation provides a new starting point for study-
ing single-step adversarial training from the perspective of
network parameters, which can help us explore the training
dynamics. Our contributions can be summarized as follows:

• We propose ”self-fitting”, a novel perspective to inter-
pret catastrophic overfitting in fast adversarial training.

• We delve into the changes of network structure during
CO, pointing out that there are some special channels
for fitting self-information, i.e., the ”channel differen-
tiation” phenomenon.

• Based on self-fitting, we provide new insights into pre-
vious methods for mitigating CO, and also extend CO
to multi-step AT.

2. Related work
2.1. Adversarial Attack

Since DNNs are discovered vulnerable to adversarial ex-
amples [24], a family of methods are proposed to generate
AEs. FGSM [11] and PGD [18] are two popular white-
box attack algorithms that craft AEs according to the gra-
dient of loss w.r.t. to input. Square attack [1] is a state-of-
the-art black-box attack which iteratively crafts adversar-
ial examples without gradients by only querying the DNN’s
outputs, and there have been special defense for query at-
tacks [7, 27]. AutoAttack (AA) ensembles four attack algo-
rithms, including two white-box attack algorithms and two
black-box attack algorithms [8]. AA is recognized as one of
the strongest attack algorithms and is widely used to evalu-
ate adversarial robustness.

2.2. Efficient Adversarial Training

Adversarial training [17,18] is considered to be the most
effective way to defend against adversarial attacks by aug-
menting training data with adversarial examples. Since the
generation of AEs is time-consuming, many variants of AT
try to improve training efficiency. Free AT [21] updates net-
work parameters while generating AEs at the same time.
YOPO [31] restricts most of the forward and back propa-
gation within the first layer of the network during AE up-
dates. Fast AT [26] replace multi-step attacks with FGSM
and generate AEs with single-step gradient.

2.3. Catastrophic Overfitting

Although Fast AT can achieve comparable performance
to multi-step AT, it suffers from catastrophic overfitting, i.e.,
the PGD accuracy drops to zero while the FGSM accuracy
increases quickly within a few epochs. Some works mit-
igate CO by generating more adversarial examples. For
example, ATTA [32] combines AEs of the last epoch and
gradient of the current epoch, and N-FGSM [9] generates
AEs using a stronger noise without clipping the perturba-
tion. Other works apply strong regularization terms to sta-
bilize the training. For example, GradAlign [2] prevents CO
by maximizing the gradient alignment around clean exam-
ples to reserve local linearity. Compared to the consensus



that the adversarial perturbations become ”meaningless” af-
ter CO, we reveal that they contain much model informa-
tion (self-information) to conversely facilitate the network
recognition.

3. Self-fitting phenomenon in FAT
Standard adversarial training [18] can be formatted as a

min-max problem as:

min
θ

E(x,y)∈D

[
max
δ≤ϵ

ℓθ(x+ δ, y)

]
, (1)

where θ ∈ Rn denotes network parameters; y is the ground-
truth label of sample x ∈ Rd from training set D; δ ∈ Rd

is the adversarial perturbation constrained with the norm
bound ϵ; x + δ denotes the adversarial sample; ℓθ(·) is the
loss function correspond to the specific parameter θ.

In FAT, for a certain sample pair (x, y), the optimized
objective can be written as:

min
θ

ℓθ(x+ α · δ(x, θ), y), (2)

where δ(x, θ) = sign (∇xℓθ(x, y)). Origin data x control
data information while model parameters θ control informa-
tion from the network, i.e., self-information. Note that dif-
ferent y correspond to different weights in the linear layer
of θ. As a result, y can also control the self-information
based on θ.

Normal adversarial training should balance the informa-
tion from both data and the network itself. The former helps
the network to learn meaningful knowledge from the dataset
while the latter enables the network to resist a wide range
of unknown attacks. If δ is only determined by θ, the net-
work may only reserve robustness to specific attacks, such
as universal adversarial training [3] where different x share
a common δ. If δ is only determined by x and independent
with δ, the network can only gain black-box robustness, as
discussed by [29]. Thus, fitting the information of the net-
work with proper δ is the key for AT to achieve white-box
robustness.

However, it is hard to decouple the two kinds of infor-
mation since x + α · δ(x, y) is sent back to network as a
whole when performing the model parameter optimization.
When α is large enough, δ may become the main basis for
network classification. If the network pays much attention
to its self-information in δ, the network may overfit one spe-
cific attack. As a result, the prediction is determined by only
self-information and is irrelevant to the data-information. In
other words, the perturbation is not harmful but useful for
the network to recognize adversarial examples. This short-
cut solution has a low loss value but is hard to generalize
to other attacks or even the original dataset because data-
information is unimportant for classification under such a
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Figure 2. FGSM-AT training with different ϵ on Cifar10 using
ResNet18. Catastrophic overfitting happens at 23rd epoch for ϵ =
8/255 and 10th epoch for ϵ = 16/255. Line ”Train” accuracy is
the FGSM accuracy of the training set. Line ”RL-Train” accuracy
is the random-label FGSM accuracy of the training set. Line ”Test
PGD” accuracy is the PGD10 accuracy of the test set.

shortcut solution. We name the possible shortcut solution
as ”self-fitting”.

The above analysis illustrates the possible existence of
self-fitting in adversarial training, which may lead to ab-
normal behavior during the training process. In this sec-
tion, we probe this experimentally and show that there is a
connection between self-fitting and catastrophic overfitting
(CO). We argue that self-fitting could be a primary underly-
ing cause for the occurrence of CO — δ contains the label
information y and eventually dominates the predictions.

In order to demonstrate the self-fitting phenomenon in
CO, we first train ResNet18 on Cifar10 with FGSM-AT
method [26] with different ϵ. The training curve is shown in
Fig. 2. Catastrophic overfitting happens at 23rd epoch for
ϵ = 8/255 and 10th epoch for ϵ = 16/255.

The following experiment is designed to observe if the
prediction changes with the self-information change. Since
y can also control the self-information in sign (∇δℓθ(x, y)),
we fix origin samples xori and change labels y to gener-
ate adversarial perturbations with different self-information
and test the random-label FGSM accuracy (RL-FGSM ac-
curacy) of a network after CO. Practically, we first assign
each sample a random label before testing, and then gener-
ate the adversarial example w.r.t. that random label, i.e.:

xrandom = xori + α · sign (∇δℓθ(xori, yrandom)) ,

where α = ϵ is the attack step size. Then accuracy is calcu-
lated by comparing the prediction fθ(xrandom) and random
label yrandom, where fθ(·) represents the parametric model



with θ. For a normal trained model, the accuracy on a com-
pletely shuffled dataset should be 10%. After FGSM attack,
the accuracy is anticipated to drop below 10%. We test the
RL-FGSM accuracy of checkpoints saved at the end of each
epoch for different ϵ. The result is shown in Fig. 2. We
show results using the training set, but similar ones can be
observed in the test set.

From the experiments, we can conclude that: i) The
RL-FGSM accuracy of a network with CO is more than
10%, which suggests that for those FGSM examples gener-
ated with wrong labels, the network can recognize the self-
information embedded in the single-step adversarial pertur-
bation and predict those AEs as specific random labels. We
randomly choose one example from the test set and perform
10 FGSM attacks with different classes as the ground-truth.
Fig. 3 visualizes the output probability of the network in
the corresponding class when the step size of FGSM per-
turbation gradually increases. We observe that when the
step size is small, the perturbation can fool the network to
misclassify AEs, which agrees with the decision boundary
distortion phenomenon discovered by [15]. But more sur-
prisingly, not only the perturbation generated with the right
label but also the perturbation generated with other labels
can help the network classify single-step AE as the corre-
sponding label when the step size is close to ϵ. ii) As catas-
trophic overfitting (CO) occurs, the RL-FGSM accuracy of
the network gradually increases with further training, which
suggests that the network alters its learning approach and
starts to acquire the capability to identify self-information.
Consequently, it suddenly loses robustness to other attacks.
iii) The network trained with larger ϵ exhibits higher RL-
FGSM accuracy, with a maximum value exceeding 90%. In
contrast, the maximum value of the network trained with
ϵ = 8/255 is only about 40%. This discrepancy may be due
to the fact that larger ϵ embed stronger self-information into
the adversarial perturbation, making it more likely for the
network to identify the self-information in single-step AEs
while ignoring the information of original distribution.

Previous works [2, 15, 19] have either directly or implic-
itly argued that the adversarial perturbation becomes mean-
ingless after CO so that the network recognize single-step
AEs in the same way it recognizes clean examples. How-
ever, this explanation fails to account for the low clean ac-
curacy on original distribution after CO, especially when
perturbation budget is large (for example, ϵ = 16/255). A
more plausible hypothesis is that the distribution of single-
step AEs after CO is distinct from the distribution of the
original adversarial examples and the distribution of clean
examples. As mentioned above, an adversarial-training net-
work may prioritize self-information in adversarial pertur-
bation. We think the change in adversarial distribution is the
result of the network starting to learn the self-information
embedded in adversarial perturbation when CO happens.
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Figure 3. Visualization of the probability of the network in the
corresponding classes when the step size of FGSM perturbation
gradually increases. The original class is class 4. The network is
trained with ϵ = 16/255.

This phenomenon that a network is capable to embed la-
bel information into adversarial perturbation (gradient sign)
and recognize the label used when generating adversarial
examples could be named ”self-fitting”. Because the label
information is generated through attacking the network, fit-
ting label information of adversarial examples is fitting the
network itself.

4. Channel differentiation

GradAlign [2] proposes that in a single-layer CNN, a
Laplace filter that can amplify high-frequency noise grows
in magnitude and outcoming weights when CO happens.
Motivated by their findings, we want to further explore
whether there is any part that plays a decisive role in rec-
ognizing self-information for a more complex network.

Since the network interacts directly with the perturba-
tion via the first layer, we concentrate our analysis on the
first layer, as done in [31]. To further study the non-linear
characteristics of the network, the features of all train-
ing data after the first activation layer are extracted. For
example, in ResNet18, we investigate the features f =
relu(bn(conv(xFGSM))), where xFGSM is the FGSM exam-
ples; conv(·), bn(·) and relu(·) respectively represent the
first Convolution layer, the first BatchNorm layer and the
first activation layer. By concatenating the features of all
training examples, we can obtain a tensor with the shape of
(N,C,H,W ), where N represents the number of training
examples, C represents the number of channels, H repre-
sents the feature height, and W represents the feature width.
In a ResNet18 network, C is equal to 64.

A simple intuition is that the greater the variance of data,
the more information it contains. Therefore, we can utilize
the channel variance as a metric to evaluate the significance
of different channels. Channels with higher variances are
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Figure 4. The variance values in descending order of networks
with and without the CO trained on Cifar10 using ResNet18 with
ϵ = 8/255. The network with CO has a larger maximum variance
value and more zero variance channels.

considered more crucial than those with lower variances.
We then calculate the feature variance of different channels
extracted from the entire training data and sort them in de-
scending order. The variance curves of different network
checkpoints (with/without CO) in a single training exper-
iment are illustrated in Fig. 4. Two prominent phenomena
can be observed: i) The variance curve of the first few chan-
nels becomes notably steeper after CO, indicating a sig-
nificant enhancement in the information contained in these
channels. More specifically, the information contained in
these enhanced channels could help recognize FGSM ex-
amples. ii) For the part of smaller variance values, there are
many channels with nearly zero variance after CO. Upon
closer inspection, we notice that these channels are virtu-
ally ”dead” after CO, as their corresponding variance values
approach zero.

These two phenomena suggest that after CO, the network
may become too dependent on channels with high vari-
ance after CO and might ignore other channels with lower
variance. To verify this hypothesis, we prune one channel
with the highest variance and re-evaluate the clean accuracy
and FGSM accuracy to investigate the role of high-variance
channels in recognizing clean and FGSM examples. This
result in Tab. 1 suggests that the channels with high vari-
ance after CO are indeed crucial for the network to rec-
ognize FGSM examples. The drastic decrease in FGSM
accuracy indicates that the network after CO heavily relies
on these channels to recognize FGSM examples with self-
information. Meanwhile, the small change in clean accu-
racy and PGD accuracy suggests that these channels do not
play a significant role in recognizing clean examples or in
defending against more sophisticated attacks like PGD.

This suggests there is a ”channel differentiation” phe-
nomenon after CO, i.e., different channels identify differ-
ent kinds of examples. Channels with high feature variance
mainly recognize single-step AEs (containing much self-

Table 1. Accuracy drop of different networks on Cifar10 using
ResNet18 with ϵ = 8/255. Compared to the network without CO,
the network with CO has a large drop in FGSM accuracy while
little change in clean accuracy.

CLEAN FGSM PGD

W/O CO, NOT PRUNED 75.2% 50.0% 41.5%
W/O CO, PRUNED -0.4% -2.6% 0.4%

WITH CO, NOT PRUNED 75.9% 99.3% 0.1%
WITH CO, PRUNED -0.4% -86.3% -2.2%

information) and other channels recognize clean examples.
We also calculated the variance of the corresponding pa-
rameters for different channels (a large parameter variance
means that this channel mainly extracts high-frequency in-
formation) and find that channels with high feature variance
also have high parameter variance. In general, channels that
identify high-frequency information are gradually taking a
dominant role in the recognition of single-step AEs. Even-
tually, the over-reliance on these channels leads to the oc-
currence of CO.
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Figure 5. Training curves of original training and the network
with CO after pruning high-variance channels on Cifar10 using
ResNet18 with ϵ = 8/255. After pruning, the network can regain
PGD robustness for some epochs.

To further observe the effect of high-variance channels
on training, we continue the training after setting the pa-
rameters associated with the pruned channel with the high-
est variance to zero. Fig.5 shows that pruned high-variance
channels can help the network recover robustness quickly
after a short training and delay the occurrence of CO.

5. Further Discussion
Is adversarial initialization sufficient to prevent FAT

from falling into self-fitting? Some works [4,14,22] claim
that better initialization can help to generate more adversar-
ial examples and then mitigate the occurrence of CO. But
from the perspective of self-fitting, simply improving the



initialization without applying regularization to the training
process cannot prevent networks from recognizing the self-
information. When enough self-information is added on in-
puts, i.e., ϵ is large enough, the network could still find the
shortcut solution and fall into self-fitting.

To explore whether adversarial initialization can mitigate
CO, a ResNet18 is trained on Cifar10 with ϵ = 16 follow-
ing the experiment settings in Fig. 2. The only difference
is that a PGD attack with 7 steps is used here to find an ad-
versarial initialization before adding the single-step pertur-
bation. Fig. 6 shows that even with a sufficiently adversar-
ial initialization, CO stills happens when ϵ is large enough.
Compared to training with the random initialization, train-
ing with PGD-7 as initialization is less stable and can regain
robustness sometimes. However, after long enough training,
CO still happens with such an initialization.
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Figure 6. FGSM-AT with PGD-7 perturbation initialization. We
observe catastrophic overfitting still happens

Regularization can help mitigate CO. Some works add
proper regularization terms in loss function to guide the
training, such as GradAlign [2] and NuAT [23]. From the
perspective of self-fitting, these regularization terms pre-
vent the network from directly using self-information for
classification by matching certain properties of original ex-
amples with those of adversarial examples. To some ex-
tent, these regularization terms interfere with the learning
of self-information while helping identify clean samples or
randomly perturbed samples, thereby avoiding CO.

For example, [2] found that after CO a dramatic decrease
in local linearity happens. After CO the network turns to
recognize self-information instead of data information. As
a consequence, even though the original data point x and the
data point after the random perturbation x+ δ0 are close on
the original data manifold, they are far from each other on
the self-information manifold. The gradients at these two
points are nearly orthogonal to each other. Thus, increasing
the cosine similarity of x and x + δ0 can exclude the influ-
ence of self-information and the mitigate CO. We also ob-
serve that aligning the gradient of x and xFGSM cannot pre-
vent CO, since in this regularization term self-information

in xFGSM can be captured by the network.
CO also happens in multi-step adversarial training.

The results above focus on self-fitting in FAT, but self-fitting
should also happen in multi-step adversarial training. To ex-
plore whether CO would happen in multi-step AT, we train
ResNet18 on Cifar10 with different iterations and step sizes
using a PGD attack. The results in Fig. 7 suggest that in
some settings, the test robust accuracy would drop to nearly
0, which means CO still happens in multi-step AT as ex-
pected. Firstly, for large step size α(α ≥ 12/255), increas-
ing iterations cannot prevent networks from CO. Secondly,
by fixing the iteration number, the robust accuracy rate rises
and then falls as α increases. When α is small, increasing it
can generate more adversarial examples. When α is large,
increasing it leads to the decrease of robust accuracy, with
first robust overfitting and finally catastrophic overfitting.
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Figure 7. Robust accuracy of multi-step AT with different itera-
tions and step sizes. ϵ = 16/255 and the robust accuracy is the
minimum value of the last half training, tested with a PGD-10 at-
tack with random start.

6. Conclusion

In this paper, we propose a novel perspective, i.e., self-
fitting, to interpret catastrophic overfitting in fast adversarial
training. Self-fitting reveals a possible shortcut solution in
adversarial training that an AT-trained DNN can embed self-
information into adversarial perturbation for classification
while ignoring data-information. Moreover, we also find a
”channel differentiation” phenomenon that different chan-
nels of the network’s first layer recognize different types of
examples, which gives further evidence that part of the net-
work is dedicated to recognizing self-information. Based
on self-fitting, we can explain the existing method to miti-
gate CO and extend CO to multi-step AT. We believe that
the interaction between the model and adversarial perturba-
tion is an important reason for CO. Our findings provide a
new perspective on CO prevention that how to preserve the
adversarial properties of AEs while reducing the influence
of self-information.
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