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Abstract

The excellent performance of artificial intelligence algo-
rithms in target detection greatly improves the efficiency of
detection. However, this alternative to human processing of
image information faces many challenges, one of which is
adversarial examples (AE). For aerial detection, it is a func-
tion widely used in many fields to obtain detection pictures
of optical, infrared, and synthetic aperture radars (SAR)
from high altitudes to identify ground targets. But in the
current research results, optical sensors, infrared sensors,
and SAR will be attacked by adversarial patches and per-
turbation. When these attacks exist, it is risky to let in-
telligent algorithms perform aerial detection. This paper
will focus on the characteristics of each detection mode and
propose Adaptive Defense Pipeline (ADP) in addition to im-
proving algorithm robustness through training. According
to different weather conditions, the ADP sets the weight co-
efficients of the detection results of multiple sensors to syn-
thesize the detection results, and on this basis, the second
confirmation is added. At the same time, we compare the
traditional aerial detection results of a single sensor with
the weighted results using ADP and verify that the proposed
method could indeed improve the efficiency of aerial detec-
tion using artificial intelligence algorithms in an adversar-
ial environment.

1. Introduction
With the further development of computer science, AI al-

gorithm has greatly improved the efficiency of target detec-
tion with their excellent and fast computing performance.
For aerial detection, it is obviously a necessary means to
improve efficiency. In this field, [8] [11] [29] [1] and [30]
have all explored the application methods of AI in aerial de-
tection, which could greatly improve the efficiency of target
object recognition in aerial detection.

However, with the discovery of adversarial examples [9],
the “Achilles heel” of AI has appeared in front of the world,
and the weak noise interference of AI will become a key

Figure 1. In the Adaptive Defense Pipeline, a variety of sensors
are used to detect targets. According to the temperature, rainfall
and cloud thickness at that time, weight coefficients are set to gen-
erate aerial detection results in the region, which could be used to
prevent adversarial attacks to a certain extent.

issue affecting the security of AI algorithms. In this field,
[2], [31], [27], [15], [32], [39], [12], conducted research on
the generation of adversarial examples, adversarial patches,
and perturbation. At the same time, [38], [19], [10], [16],
[21], [36], [20], [26], [16], [3] began to conduct experiments
on AI attacks in digital environments or real-world environ-
ments.

Therefore, the risk faced by AI algorithms in aerial de-
tection is obvious. The detector with the intelligent al-
gorithm is likely to fail to output correct results. In this
field, researchers have carried out research on the attack of
AI algorithms in aerial detection, including optical detec-
tion attack([22]), infrared imaging attack([7]), SAR imag-
ing attack([13]), etc. Each of these attacks will result in a
series of irreparable losses, making the decision to apply AI
algorithms a difficult trade-off for aerial detection activities.

In order to defend against adversarial attacks, many
research teams have proposed defense strategies. [37]
proposed the Progressive Diversified Augmentation (PDA)
method, which improves the robustness of the AI algorithm
by progressively injecting diverse adversarial noises dur-
ing training. And [17] proposed Adversarial Noise Prop-
agation (ANP), which could be easily combined with other
adversarial training methods to further improve the robust-
ness of the model by utilizing the potential of hidden layers.
[25] promoted the development of algorithm robustness by
studying the relationship between the architecture of the al-



gorithm and the robustness. In addition, [18], [24], [28] are
also studying the methods or means of training to improve
the robustness of the algorithm in the face of adversarial
attacks.

For the aerial detection field, most of which are based
on training to improve the robustness of the algorithm. [34]
proposed a new adaptive training strategy to train more ro-
bust intelligent algorithms in this way. [7] proposed adver-
sarial training for infrared detection imaging, and improved
the accuracy of the detection algorithm to a certain extent.

However, we believe that training and development are
endless and require a lot of time and resources. Therefore,
here we discuss how to utilize the AI algorithm in the exist-
ing aerial detection sensors without considering algorithm
iterative optimization and carry out the effective defense
with minimal cost, so as to give full play to the working
efficiency of the AI algorithm in aerial detection. First, we
update the traditional single sensor to detect the same tar-
get with multiple sensors. Then we analyze the detection
performance characteristics of optical sensors, infrared sen-
sors, and SAR sensors under different weather conditions,
design the weight coefficient according to these, and form
the final detection results based on the detection results of
various sensors. Finally, considering the risk that the mis-
judgment of the result may bring to other subsequent activ-
ities, the threshold of manual confirmation is set to ensure
that the weighted detection results could reduce the labor
cost and misjudgment cost to the greatest extent. In sum-
mary, our main contributions are as follows:

• We discuss the vulnerability of the AI algorithm in cur-
rent aerial detection and identification and the risks it
brings.

• We designed the Adaptive Defense Pipeline (ADP)
based on the weighted fusion of multiple detection
modes and carried out simulation experiments in com-
mercial software to prove the advantages of ADP.

2. Related Work
At the beginning of the application research of AI algo-

rithm, Dudgeon and Lacoss [6] put forward the process of
automatic target detection: The sensor collects the signal
data, then filters the background noise, and then screens out
the non-target information through recognition processing,
and finally forms the target list. After the appearance of AE,
many research teams in the field have carried out research
on adversarial attacks and defenses in the field of aerial de-
tection.

2.1. Adversarial Attacks in Aerial Detection

Among the attacks against different types of sensors, Ed-
wards and Rawat [7] studied the infrared detection attack,

Li et al. [13] explored the influence of adversarial attacks
on SAR image recognition, Lu et al. [22], Xu and Ghamisi
[33] and den Hollander et al. [5] explored the AE of opti-
cal remote sensing images. Chen et al. [4] researched the
adversarial attack of remote sensing images and concluded
that the average probability of the DNN algorithm being
fooled in SAR is 76.01%, and the average probability of
optical data set being fooled is 60.28%. Furthermore, Lian
et al. [14] proposed an adaptive-patch-based physical attack
(AP-PA) framework to enhance the attack adaptability of
the defensive patch in a complex and real physical environ-
ment. At the same time, for different detectors, Lian et al.
[14] have done experiments to prove that it could maintain
high attack efficiency.

2.2. Adversarial Defenses in Aerial Detection

From the perspective of training, Xu et al. [34] put for-
ward the defense mode of aerial detection intelligent algo-
rithm against adversarial attacks, and directly used the gen-
erated AE to carry out training, to improve the robustness
of the intelligent algorithm in the face of adversarial attacks.
Edwards and Rawat [7] used adversarial training to enhance
the defense of AE in the field of aerial infrared detection.
Raja et al. [23] also proposed to improve the robustness of
unmanned aerial vehicles (UAV) to AE through training. It
could be seen that the current research focuses on improv-
ing the robustness of algorithms through training, but there
is not much research on how to improve the robustness of
existing intelligent algorithms to AE. Xue et al. [35] located
the AE position in the aerial detection image, removed the
poisoning part and redrawn the image, and then transmit-
ted it to the subsequent algorithm for identification. In this
way, the robustness of detection was improved. However,
there is not much research on the robustness of other types
of sensors except optical sensors.

3. Adversarial Attacks on Different Sensors
In aerial detection, infrared sensors, SAR sensors, opti-

cal sensors, etc. are often used to collect imagery, and then
the target is classified and identified by using the character-
istic values of the target object. All types of sensors could
be attacked in adversarial environments.

3.1. Optical Sensor

Optical sensor based on visible light detection is the most
common means in aerial detection, and it is also a major
topic of the adversarial attack research field. Compared
with other imaging methods, optical images could provide
more details of objects. However, because the imaging prin-
ciple of the optical sensor is greatly influenced by illumina-
tion, optical detection needs sufficient illumination and high
visibility to play its maximum effectiveness. At the same
time, for optical sensors, the imaging angle will also affect



the extraction of target features, thus affecting the detection
efficiency of targets.

A considerable number of adversarial attacks could af-
fect the optical sensor, such as sticking AE on or near the
target object, which could attack the identification mod-
ule of the optical sensor. Under the natural environment
suitable for optical detection, adversarial information could
also be the better image in the sensor. Therefore, there is a
high probability that the optical sensor will be attacked by
AE.

Figure 2. Taking the optical imaging of aerial detection as an ex-
ample, when the image is clean, targets could be successfully iden-
tified through the imaging of the sensor and the feature analysis.
When AE appears in the image, the algorithm will be confused,
which will eventually lead to the failure of target detection.

3.2. Infrared Sensor

The infrared sensors could work under all-day condi-
tions, but the detection ability of the image will decrease
when it meets the weather conditions of fog and haze. The-
oretically, any object whose temperature is above absolute
zero will radiate infrared rays. Theoretically, any object
with a temperature above absolute zero will radiate infrared
rays. The higher the temperature, the shorter the wave-
length, and the larger the volume, the stronger the radiation.

For the adversarial attacks, according to the research[7],
because the infrared image is a single channel image, the
attack methods for RGB could also attack the infrared im-
age. Therefore, the attackers could post or place the AE
suitable for attacking RGB images on or near the unit to be
concealed, and then transmit the attack information to the
intelligent algorithm when the infrared sensor detects the
area, and then complete the attack.

3.3. SAR Sensor

SAR is a microwave active sensor, which could penetrate
clouds, rain, snow, and smoke, and could detect all day and
long distances. It has a penetrating ability to disguise a cer-
tain amount of cover, and at the same time, it has an excel-
lent performance in detecting surface texture characteristics
and artificial metal objects. When the target object is dis-
covered, the type of the object is judged by the scattering

mechanism of each component.
For the SAR sensor itself, in the high-resolution SAR

image, the complex background will interfere with the ac-
curate identification of the target in the SAR image, and a
large number of background highlight scattering points are
distributed around the target, which makes it difficult to ac-
curately locate and identify. Therefore, before the SAR sen-
sor performs object and target detection, it will first perform
false alarm elimination activities.

However, the filtering of clutter could not effectively fil-
ter adversarial information such as perturbation on the tar-
get. When the target object changes its reflexivity to carry
perturbation or adversarial information by updating the ma-
terial or changing the surface texture, the image formed by
the SAR sensor will disturb the subsequent target detection
and cause the target identification to fail.

Table 1. Characteristics of various types of aerial detection sen-
sors

Type Temperature Rainfall Cloud

Optical Almost irrelevant
Rainfall↑

Accuracy↓
Cloud↑

Accuracy↓

Infrared
Temperature↑
Sensitivity↑

Rainfall↑
Accuracy↓

Cloud↑
Accuracy↓

SAR Almost irrelevant Almost irrelevant Almost irrelevant

4. Adaptive Defense Pipeline

In order to improve the robustness of intelligent algo-
rithms against adversarial attacks in aerial detection, most
research teams start with the continuous training of algo-
rithms. In addition to this method, we design ADP with the
current algorithm unchanged.

4.1. Using Multiple Sensors

By clarifying the detection target area and the target type
that might be involved, aerial detection could set the rele-
vant detection function parameters in advance. In a single
detection mission, a variety of sensors are used to detect
the target, and the detection results of various sensors are
obtained.

4.2. Setting Weight Coefficients

Different meteorological characteristics, such as temper-
ature, rainfall, and cloud thickness, will affect the sensor.
The weight coefficient is set according to the current mete-
orological setting of the detection area. Set α as the weight
coefficient of the optical sensor’s imaging results, set β as
the weight coefficient of the infrared sensor’s imaging re-
sults, and γ as that of SAR. The sum of these three coeffi-



Figure 3. Schematic diagram of ADP. After the detection tar-
get range is determined, the weights are set according to weather,
time, and other factors, and then all kinds of sensors detect the
area at the same time. The results of detection and identification
are fused according to the weights. When the overall target proba-
bility is higher than a certain value, it will be transferred to human-
in-the-loop processing.

cients should be 1, that is:

α+ β + γ = 1 (1)

The weight coefficients could adaptive change according
to each meteorological feature. For example, when the tem-
perature rises, β should increase; When rainfall increases,
α and β should decrease; And α and β should decrease as
cloud thickness increases. The weight coefficient of this
aerial exploration mission could be calculated by combin-
ing the percentage increase and decrease of all items and
the equation.

4.3. Fusing Results and Confirming

After the target detection result is given by a single detec-
tor, the fusion result is generated by weighting according to
the weight coefficient set in the previous method4.2. Set the
result of the optical sensor to identify a certain target here as
Poptical, the result of the infrared sensor as Pinfrared, and
the result of the SAR sensor as PSAR, the final detection
result’s confidence PADP follows the equation1.

PADP = α× Poptical + β × Pinfrared + γ × PSAR (2)

After the fusion result PADP comes out, according to
the determination of the leader or commander, and consid-
ering the risk and cost that could be borne by misjudgment,

a threshold λ is set. When PADP ≥ λ, it enters the con-
firmation part of human-in-the-loop; When PADP < λ, it
could be considered that there are no potential targets in this
area, and the aerial detection mission in this area is over.

After entering the Human-in-the-loop confirmation, the
human operators would confirm the potential targets again.
Human operators could judge and confirm the detected tar-
gets by using their own experience and according to the fil-
tered typical images. At this time, human operators do not
need to face massive image information but only need to
examine the images filtered by AI.

5. Experiments
5.1. Experiment Settings

Using ”Command Modern Operation” software, we de-
fine the Defensive Side and the Offensive Side. In the ex-
periment, the Offensive Side needs to detect a certain area
of the Defensive Side.

We set the temperature to a random integer between 0
degrees Celsius and 25 degrees Celsius. Set the rainfall
scale as a random integer from 0 to 40, with 0 indicating
clear weather and 40 indicating Heavy Storm. Set the cloud
thickness rating as a random integer from 0 to 10, with 0
indicating that the sky is clear and 10 indicating that the sky
is full of thick clouds.

Figure 4. Temperature, rainfall, cloud thickness, and other levels
are set in the software to control the experimental conditions of
aerial detection.

On this basis, when the temperature rises 1 degree from
0 degrees, the probability of successful detection of the in-
frared sensor increases by 4%, and the weight increases by
4%. When the rainfall level increases by 1 level, the suc-
cessful probability of the infrared sensor and optical sensor
decreases by 2% and the weight decreases by 2%. When
the cloud thickness level increases by 1 level, the success-
ful probability of the infrared sensor and optical sensor de-
creases by 10% and the weight decreases by 10%.

At the same time, on the basis of using the software’s



own general airborne optical sensor, infrared sensor, and
SAR, set the detection success rate coefficient is between
30% and 60% random number under adversarial attacks.
Let the operator believe there is a target in the area when
the probability exceeds 45%.

We conducted 10 experiments to compare the average
probability of success of a single type of sensor in aerial de-
tection with the average probability of success of the ADP
under the same meteorological conditions and adversarial
attacks.

5.2. Experiments on Single Type Sensor

In such experiments, only a single type of sensor is con-
sidered to carry out target detection in the Defensive Side’s
area.

For the same target, the aircraft carries an optical sen-
sor, infrared sensor, and SAR sensor to the target area for
detection. According to the characteristics of various sen-
sors under weather conditions, the probability of success is
modified.

The successful detection probability interval of the opti-
cal sensor under adversarial conditions is Poptical, which is
set to a random value in the range of (40 − CRain × 0.02
− CCloud × 0.1) to (60 − CRain × 0.02 − CCloud × 0.1).
The successful detection probability interval of the infrared
sensor is Pinfrared, which is set to a random value in the
range of (40 + CTemp × 0.04 − CRain × 0.02 − CCloud

× 0.1) to (60+ CTemp × 0.04 − CRain × 0.02 − CCloud

× 0.1), and the successful detection probability interval of
SAR sensor is PSAR, which is set to a random value in the
range of 40 to 60.

Among them, CTemp represents the temperature, CRain

represents the rainfall level, and CCloud represents the cloud
thickness level.

Figure 5. Under different weather conditions, we use optical sen-
sors, infrared sensors, and SAR to detect the same target on the
Defense Side.

Each type of sensor conducts 10 detection missions on
the same target under 10 random weather conditions. The

detection results are shown in the table 2.

Table 2. Single sensor experimental results

Conditions
(Temperature/Rainfall/Cloud)

Poptical Pinfrared PSAR

21 / 19 / 6 41% 39% 55%

20 / 15 / 3 44% 48% 56%

21 / 26 / 10 49% 55% 60%

15 / 19 / 8 53% 50% 51%

22 / 4 / 1 49% 45% 47%

9 / 35 / 6 50% 49% 53%

3 / 13 / 5 41% 39% 56%

23 / 4 / 10 41% 53% 43%

11 / 37 / 10 43% 40% 43%

21 / 11 / 2 50% 44% 45%

5.3. Experiments with ADP

Based on the experiments 5.2 of detecting the target with
a single sensor, the weight coefficient is set according to the
weather conditions.

Table 3. Adjustment of weight coefficients under weather condi-
tions

Sensor type Optical Infrared SAR

Temperature 1 1 + CTemp × 0.04 1
Rainfall 1 − CRain × 0.02 1 − CRain × 0.02 1
Cloud 1 − CCloud × 0.1 1 − CCloud × 0.1 1

Total
3 − CRain × 0.02
− CCloud × 0.1

3 + CTemp × 0.04
− CRain × 0.02
− CCloud × 0.1

3

Therefore, according to the table 3, the calculation for-
mula of each weighting coefficient is as follows:

Total = 9 + CTemp × 0.04− CRain × 0.04− CCloud × 0.2
(3)

α =
3− CRain × 0.02− CCloud × 0.1

Total
(4)

β =
3 + CTemp × 0.04− CRain × 0.02− CCloud × 0.1

Total
(5)

γ =
3

Total
(6)



The final weighted probability of successful detection is
PADP , which could be calculated by equation 2.

When the detection result rate PADP is more than 45%,
enter the human-in-the-loop confirming step. It is assumed
that after entering the human-in-the-loop step, the efficiency
of final aerial detection could be maximized.

Based on the test results of a single sensor, the weight
setting and the final weighted detection results are shown in
the table 4.

Table 4. Experimental results after using ADP

Conditions
(Temperature/Rainfall/Cloud)

α β γ PADP

21 / 19 / 6 0.256 0.363 0.381 45.60%

20 / 15 / 3 0.279 0.372 0.349 49.67%

21 / 26 / 10 0.218 0.341 0.441 55.90%

15 / 19 / 8 0.252 0.334 0.414 51.17%

22 / 4 / 1 0.296 0.389 0.315 46.82%

9 / 35 / 6 0.251 0.305 0.444 51.03%

3 / 13 / 5 0.295 0.310 0.395 46.30%

23 / 4 / 10 0.247 0.366 0.387 46.16%

11 / 37 / 10 0.211 0.285 0.503 42.14%

21 / 11 / 2 0.287 0.380 0.333 46.05%

5.4. Analysis of Results

If the final threshold is set at 45%, it could be clearly
seen from the table that in 10 experiments, the optical sen-
sor found the target 5 times, the infrared sensor found the
target 6 times, and the SAR sensor found the target 8 times.
However, weighted by the ADP algorithm, targets in this re-
gion could be found 9 times under the same meteorological
conditions, indicating that ADP could guarantee the robust-
ness of intelligent detection results even under adversarial
attacks to a certain extent.

6. Conclusion

In this study, we explored the ADP besides improv-
ing the robustness of the model algorithm through training.
Considering the influence of meteorological factors such as
temperature, rainfall, and cloud thickness on various types
of sensors during aerial detection, we set the weight coef-
ficients of optical sensors, infrared sensors, and SAR, and
fused them to generate the final detection results. Accord-
ing to the fusion results of target detection information, the
human operator makes the secondary confirmation, which

ensures the robustness of target detection under adversarial
attack to a certain extent.

We believe that if we could continue to train algorithms
on the basis of ADP, we could further improve the robust-
ness of intelligent algorithms for aerial detection and pro-
vide better solutions for intelligent aerial detection.

7. Broader Impacts

We explore the defense method of aerial detection when
the current intelligent algorithm faces adversarial attacks, in
order to find an emergency option outside the training algo-
rithm, that is, how to improve the robustness in the face of
adversarial attacks without time and resources to train the
algorithm. We believe that this is a new possible choice be-
sides the training algorithm, so as to reduce the influence
of adversarial attacks on the application of intelligent algo-
rithms and promote the AI algorithms to provide services
for humans more widely. In the meantime, we will con-
tinue to explore the addition of training algorithms on the
basis of ADP to bring more contributions to robustness.
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