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1. Background

1.1. Randomized Smoothing

Let f : Rd → {1, 2, 3, ...,K} be a neural network that
maps a d dimensional image to one of the K classes. Us-
ing Randomized Smoothing, the base classifier f(x) can
be transformed to a smoothed classifier g(x) that has in-
herent probabilistic certified guarantees. Given an input x,
the smoothed classifier g(x) outputs the most likely class as
predicted by the base classifier, across different augmenta-
tions of the input image, as shown below:

g(x) = argmax
c

P [f(x+ ε) = c] (1)

Here, ε is generated from a smoothing measure µ. Con-
sidering µ to be isotropic Gaussian, Cohen et al. [1] show
that g(x) inherits certified robustness in ℓ2 norm through
the following theorem.

Theorem 1. (Restating theorem 1 by Cohen et al. [1]):
Let ε ∼ N(0, σ2I). Suppose cA ∈ {1, 2, 3, ...,K} and
pA, pB ∈ [0, 1] satisfy: P (f(x + ε) = cA) ≥ pA ≥ pB ≥
maxc ̸=cAP (f(x + ε) = c). Then g(x + δ) = cA for all
||δ||2 < R, where R = σ

2 (Φ
−1(pA) − Φ−1(pB)), Φ−1 be-

ing the inverse of standard Gaussian CDF.

Yang et al. [3] show using the following theorem that by
considering µ as a Uniform distribution, g(x) has provable
robustness guarantee against ℓ1 norm constrained attacks.

Theorem 2. (Restating theorem I.8 by Yang et al. [3]):
Suppose H is a smoothed classifier smoothed by the uni-
form distribution on the cube [−λ, λ]d, such that H(x) =
(H(x)1, ...,H(x)C) is a vector of probabilities that H as-
signs to each class 1, ..., C. If H correctly predicts the class

y on input x, and the probability of the correct class is ρ
def
=

H(x)y > 1/2, then H continues to predict the correct class
when x is perturbed by any η with ||η||1 < 2λ(ρ− 0.5).

*Equal Contribution

1.2. Consistency Regularization

Jeong and Shin [2] attempts to achieve better generaliza-
tion performance of the base classifier over noise augmen-
tation. Since, during certification the model is evaluated on
noise augmented inputs, it is logical to use noise augmented
inputs for training also, but the variance of the noise distri-
bution hampers the stability of the training process. This
work introduces a regularizer on top of the standard cross
entropy loss that controls the prediction consistency over
noisy samples. The overall loss function is,

L :=
1

m

∑
i

(LCE(F (x+ δi), y)+

λ ·KL(F̂ (x)||F (x+ δi)) + η ·H(F̂ (x)) (2)

where KL(·||·) is the KL-divergence term and H(·) is the
entropy term. F (x) is the differentiable function on which
the classifier f is built, δ is Gaussian noise and F̂ (x) =
1
m

∑
i F (x+ δi). λ and η are hyperparameters. LCE is the

cross entropy function. The KL term reduces the variance of
the predictions while the entropy term prevents the variance
to become 0. In the paper, m is fixed as 2 and η is fixed
at 0.5. The certification process is exactly same as that of
Gaussian Smoothing.

1.3. Kurtosis of a distribution

Let X be a real valued random variable, then the kurto-
sis, K(X) of the probability distribution of X is defined as,

K(X) =
µ4

µ2
2

− 3 (3)

where µi is the ith ordered central moment of X , i.e.,

µi = E[X − E[X]]i (4)

Kurtosis measures the shape of a distribution in terms of its
tailedness. If a probability distribution has fat tails, that is
the random variable X has a good amount of area under the
curve on its tails then for points in that region, X − E[X]
would be large in magnitude. So, [X − E[X]]4 would pro-
duce even larger positive values. Therefore a high value of
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E[X − E[X]]4 or µ4 denotes a fat tailed distribution. The
very similar argument follows to conclude that a random
variable with low value of µ4 has a thin tailed probability
distribution. In general a standardized metric is used hence,
µ4

µ2
2

. The above metric K(X) is used to measure the tailed-
ness of a distribution relative to Gaussian distribution. For
a normal distribution, µ4

µ2
2

= 3, so K(X) becomes 0 and
the distribution is called a mesokurtic distribution. A dis-
tribution with a negative K(X) is called a platykurtic dis-
tribution and has thinner tails than that of a Gaussian dis-
tribution, whereas a distribution with a positive K(X) is
called a leptokurtic distribution which has fatter tails than
a Gaussian distribution. A platykurtic distribution is less
prone to generate outliers than a Gaussian distribution while
a leptokurtic distribution produces outliers with a higher
probability than that of a Gaussian distribution. For exam-
ple, Uniform distribution is a platykurtic distribution with
K(X) = −1.2. It does not generate outliers at all, whereas
a standard Laplace distribution has K(X) = 3 which gen-
erates much more outliers than Gaussian distribution.

2. Theoretical properties of Normal-Uniform
distribution

Let X ∼ N(0, σ2
N ) and Y ∼ U(−λ, λ) independently,

then Z = X + Y will follow a Normal-Uniform distribu-
tion with parameters (σN , λ). The σN denotes the standard
deviation of Normal distribution. For a U(−λ, λ) distri-
bution, the standard deviation is σU = λ√

3
. Therefore to

define both the distributions with the same parameter, we
have used σU instead of λ in all our experiments. Hence the
Normal-Uniform distribution is defined with the parameters
(σN , σU ). By controlling these parameters, we can effec-
tively control the shape of the distribution (Figure 1) and
can make it to behave more like a Gaussian distribution or
a Uniform distribution accordingly (Figure 2).

Lemma 1. If X ∼ N (0, σ2) and Y ∼ U(−λ, λ) with X
and Y being independent, then Z = X + Y has the pdf as
fZ(z) =

1
2λ [Φ(

z+λ
σ )−Φ( z−λ

σ )] with z ∈ (−∞,∞), where
Φ(.) is the CDF of standard normal distribution.

Proof. pdf of X is fX(x) = 1
σ
√
2π

e−
x2

2σ2 with x ∈ R. Pdf
of Y is fY (y) = 1

2λ with y ∈ (−λ, λ). Then, FZ(t) =
P [Z ≤ t]

=
∫∫

x+y≤t
fX(x)fY (y) dx dy

=
∫∞
−∞ fY (y){

∫ t−y

−∞ fX(x)dx}dy
=

∫∞
−∞ fY (y)Φ(

t−y
σ )dy

So, the pdf is

fZ(z) =
1
σ

∫∞
−∞ fY (y)ϕ(

t−y
σ )dy

= 1
σ

∫ λ

−λ
1
2λϕ(

t−y
σ )dy = 1

2λ [Φ(
z+λ
σ )− Φ( z−λ

σ )]

Figure 1. By controlling σN and σU , the shape of Normal-
Uniform probability distribution function (pdf) can be ad-
justed from bell shaped to flat surfaced. Left: Com-
parison of pdf of Normal(σN = 0.5)(Blue), Normal-
Uniform(σN = 0.5, σU = 0.577)(Orange), Normal-
Uniform(σN = 0.5, σU = 1.500)(Green) Right: Comparison
of pdf of Normal(σN = 0.12)(Blue), Normal-Uniform(0, σN =
0.12, σU = 0.144)(Orange), Normal-Uniform(σN = 0.12, σU =
0.25)(Green)

with z ∈ (−∞,∞).

Lemma 2. If X ∼ N(0, σ2) and Y ∼ U(−λ, λ) with X
and Y being independent, then Z = X + Y has the cdf as
FZ(t) =

σ
2λ [

t+λ
σ Φ( t+λ

σ )+ϕ( t+λ
σ )− t−λ

σ Φ( t−λ
σ )−ϕ( t−λ

σ )]
with t ∈ (−∞,∞), where Φ(.) and ϕ(.) are the CDF and
pdf of standard normal distribution respectively.

Proof. FZ(t) = P [X ≤ t] =
∫ t

−∞
1
2λ [Φ(

z+λ
σ ) −

Φ( z−λ
σ )]dx

Let I =
∫ t

−∞ Φ(x+λ
σ )dx = σ

∫ t+λ
σ

−∞ Φ(z)dz

= σ[Φ(z)z −
∫
ϕ(z)zdz]

t+λ
σ

−∞ = σ[Φ(z)z + ϕ(z)]
t+λ
σ

−∞

= σ[Φ( t+λ
σ )( t+λ

σ ) + ϕ( t+λ
σ )]

Similarly calculating for the second term and replacing in
the original equation, we get
FZ(t) = σ

2λ [
t+λ
σ Φ( t+λ

σ ) + ϕ( t+λ
σ ) − t−λ

σ Φ( t−λ
σ ) −

ϕ( t−λ
σ )]

Lemma 3. If X ∼ N(0, σ2) and Y ∼ U(−λ, λ) with X
and Y being independent, then Z = X + Y has K(Z) =
3σ4+2σ2λ2+(λ4/5)

(σ2+(λ2/2))2 − 3

Proof. We have E(Z) = 0 and V ar(Z) =

V ar(X) + V ar(Y ) = σ2 + λ2

3
Now, µ4 = E(Z − E(Z))4 = E(Z)4 =
E[X4 + 4X3Y + 6X2Y 2 + 4XY 3 + Y 4]

= E(X4) + 6E(X2)E(Y 2) + E(Y 4) = 3σ4 + 6σ2 λ2

3 +
E(Y 4)

We have E(Y 4) =
∫ λ

−λ
y4

2λdy = y5

10λ |
λ
−λ = λ4
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Figure 2. Similar to figure 1, by controlling the σN

and σU , the shape of Normal-Uniform cdf can be adjusted
from S shaped to a straightline. Left: Comparison of
cdfs of Normal(σN = 0.5)(Blue), Normal-Uniform(σN =
0.5, σU = 0.577)(Orange), Normal-Uniform(σN = 0.5, σU =
1.500)(Green) Right: Comparison of cdfs of Normal(σN =
1.0)(Blue), Normal-Uniform(σN = 1.0, σU = 1.155)(Orange),
Normal-Uniform(σN = 1.0, σU = 2.00)(Green)

so K(Z) = µ4

µ2
2
− 3 = 3σ4+2σ2λ2+(λ4/5)

(σ2+(λ2/2))2 − 3

We can vary the shape of the distribution from a bell
shaped curve to flat surfaced curve by controlling the σ and
λ appropriately as shown in figure 1.

3. Ablation study

3.1. Effect of tuning parameter β

We investigate the effect of the regularizer tuning pa-
rameter β. As usual, when we increase β, initially the
ACRs increase and clean accuracy decreases. A prominent
robustness-accuracy trade-off is visible in table 1. However,
as we further increase β, the clean accuracy oscillates be-
tween 55% and 52%, while the ℓ1 ACR gets stagnant around
0.770 and ℓ2 ACR around 0.750 before both dropping dras-
tically.

3.2. Effect of choice of KL term

Our proposed regularizer has two KL terms, each associ-
ated with one smoothed classifier. This results in 3 forward
passes for each batch of images during training as we need
3 different outputs F (x + NU), F (x + U), F (x + N) to
calculate the regularizer. In this section we try out the fol-
lowing regularizers having only one KL term.

RN = KL(F (x+NU)||F (x+N)) (5)

RU = KL(F (x+NU)||F (x+ U)) (6)

Table 2 shows the results under few setups. In most cases,
proposed similarity regularizer dominates the robustness for

Table 1. Effect of β when trained on Normal-Uniform(σN =
0.50, σU = 0.433) and certified on our proposed method on a sub-
set of 500 test images of CIFAR10 with Gaussian smoothing(σ =
0.60) + Uniform smoothing(σ = 0.65).

β CLEAN ACC ℓ1 ACR ℓ2 ACR
0 62.00 0.601 0.570
2 60.40 0.743 0.714
3 59.00 0.776 0.734
4 58.20 0.779 0.749
6 55.20 0.773 0.751
8 52.60 0.771 0.749

10 55.20 0.777 0.741
12 55.40 0.766 0.750
14 54.60 0.770 0.749
16 52.00 0.758 0.737
18 50.80 0.769 0.753
20 51.60 0.765 0.751
24 9.400 0.215 0.215

comparable clean accuracy. The models trained with RU

regularizer provide better clean accuracy than RS and also
comparable ℓ1 ACR. The ℓ2 ACR drops though as can be
seen in 3rd and 4th rows of table 2. On the other hand,
regularizer RN gives a better ℓ2 ACR as compared to RU

at the cost of slight decrease in clean accuracy. The use of
RU , forces the training noise to behave more like a Uniform
distribution, whereas RN makes it more similar with Gaus-
sian distribution. Table 4 shows that training with Gaus-
sian noise and certifying with Uniform noise performs bet-
ter than doing the opposite. That is why, using RU results
in higher decrease in ℓ2 ACR than that of ℓ1 ACR while us-
ing RN . Our proposed similarity regularizer performs bet-
ter in terms of both the ACRs at comparable clean accuracy
as compared to both RN and RU . However, if one has to
choose between RN and RU only, RN is more preferable.

3.3. Effect of kurtosis

So far we have used a kurtosis value of −0.22 for all our
proposed training experiments. As we know a Gaussian dis-
tribution has kurtosis value of 0 and a Uniform distribution
has kurtosis value of −1.2, so when we introduce too much
negative kurtosis in our training distribution, then it deviates
from a Gaussian distribution and behaves more like a Uni-
form distribution (Figure 3). In the next subsection, we have
evidence that training with Gaussian noise and then certify-
ing with Uniform noise works better than training with Uni-
form noise and certifying with Gaussian noise. So keeping
a mild negative kurtosis results in better robustness guaran-
tees. Table 3 shows that decreasing the kurtosis further does
not help in terms of the robustness-accuracy trade-off. The



Table 2. Effect of using a single KL term instead of two KL terms in the regularizer on a subset of 500 test images of CIFAR10.

TRAINING CERTIFICATION CLEAN ACC ℓ1 ACR ℓ2 ACR

NU(σN = 0.50, σU = 0.433)+RN (β = 6)
Gaussian(σ = 0.60) + Unif(σ = 0.650)

60.00 0.770 0.746
NU(σN = 0.50, σU = 0.433)+RU (β = 6) 58.40 0.778 0.710
NU(σN = 0.50, σU = 0.433)+RS(β = 3) 59.00 0.776 0.734

NU(σN = 1.00, σU = 0.866)+RN (β = 6)
Gaussian(σ = 1.00) + Unif(σ = 1.160)

42.80 0.806 0.763
NU(σN = 1.00, σU = 0.866)+RU (β = 6) 45.00 0.828 0.742
NU(σN = 1.00, σU = 0.866)+RS(β = 4) 44.00 0.858 0.789

Table 3. Effect of amount of negative kurtosis K(X) in the train-
ing distribution when certified on our proposed method with Gaus-
sian smoothing(σ = 1.00) + Uniform smoothing(σ = 1.160)
when tested on a subset of 500 images of CIFAR10.

TRAINING K(X) CLEAN ACC ℓ1 ACR ℓ2 ACR AVG ACR
NU(σN = 1.00, σU = 0.866) -0.22 45.00 0.671 0.625 0.648
NU(σN = 1.00, σU = 1.155) -0.39 38.40 0.682 0.606 0.644

Figure 3. Shape of Normal-Uniform distribution for different kur-
tosis values.

choice of σN and σU may seem arbitrary, but a specific re-
lation selects them. For first row, σU = 1.5√

3
σN , and for the

last row, σU = 2√
3
σN .

3.4. Performance of the baselines

In this section we evaluate the performance of the base-
lines on our proposed certification method. As per the sug-
gestions provided by the considered baselines [1, 2], the
noise level σ is fixed at different levels in prior and then
the model is trained with proposed methods from the con-

Table 4. Performance of the baselines under proposed certification
method when tested on a sample of 500 test images of CIFAR10.

σ TRAINING CERTIFICATION CLEAN ACC ℓ1 ACR ℓ2 ACR

0.25

GAUSSIAN
GAUSSIAN 76.40 0.430 0.430
UNIFORM 76.60 0.276 0.005

OURS 76.60 0.438 0.430

GAUSSIAN+CONSISTENCY
GAUSSIAN 73.40 0.535 0.535
UNIFORM 73.20 0.291 0.005

OURS 73.60 0.538 0.535

UNIFORM
GAUSSIAN 44.60 0.180 0.180
UNIFORM 86.40 0.331 0.006

OURS 58.80 0.279 0.178

0.50

GAUSSIAN
GAUSSIAN 64.80 0.523 0.523
UNIFORM 65.20 0.406 0.007

OURS 65.40 0.543 0.523

GAUSSIAN+CONSISTENCY
GAUSSIAN 64.60 0.702 0.702
UNIFORM 64.80 0.450 0.008

OURS 65.00 0.720 0.702

UNIFORM
GAUSSIAN 14.80 0.062 0.062
UNIFORM 79.40 0.568 0.01

OURS 36.60 0.271 0.062

sidered baselines at that fixed noise level. For certification
we create a Gaussian smoothed classifier and a Uniform
smoothed classifier each with the same fixed noise level and
combine the certificates as per our proposed method. Ta-
ble 4 describes the results for σ ∈ {0.25, 0.50} and shows
that the performance is inferior to our proposed training
noise distribution. We get an insignificant improvement in
ℓ1 ACR under Gaussian noise training when the model is
certified with our proposed hybrid smoothed classifier over
Gaussian smoothed classifier. This shows that the proposed
use of Normal-Uniform noise distribution as the training
noise plays a key role in order to create highly robust hybrid
smoothed classifier. Another notable finding is that perfor-
mance of the models trained with Gaussian noise augmen-
tation and certified under Uniform smoothing are far better
than the performance of the models trained with Uniform
noise augmentation and certified under Gaussian Smooth-
ing.
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